ADAPTIVITY AND ASYNCHRONY
IN DISTRIBUTED KEY GENERATION

SARAH MEIKLEJOHN (GOOGLE & UCL)

DISTRIBUTED KEY GENERATION

A distributed key generation (DKG) protocol allows a set of
participants to generate a threshold public key

USING A DKG

Classical use cases:
- Want t of n parties to have to collaborate to decrypt something
- Want t of n parties to have to collaborate to authorize some
action (sign something)

For these we expect to run the DKG only once

—> m, O s.t.
Verify(pk, o, m) =1

USING A DKG

Classical use cases:
- Want t of n parties to have to collaborate to decrypt something
- Want t of n parties to have to collaborate to authorize some

action (sign something)
For these we expect to run the DKG only once

Can also use DKGs for random beacons

1. Run the DKG to generate a threshold public key @!‘
2. Have t parties produce a unique threshold signature OC
3. Hash the unique signature to produce randomness DEINITY

Here we might run the DKG many times, so there is interest in having
efficient DKG protocols that operate in asynchronous environments

4

ADKG PROTOCOLS

word round
complexity complexity

[KG10]* A .
[KMS20] ne a
[APMMST21] [p3. 1
[DYXMKR22] [nd log(n)

[GS22] w 1

*assumes partial synchrony

BUILDING A DKG

Most DKGs are based on secret sharing

A secret sharing scheme consists of two protocols:
- Deal (Share) allows one party (the dealer) to share a secret
- Reconstruct allows t+1 parties to compute the secret

BUILDING A DKG

Most DKGs are based on secret sharing

A secret sharing scheme consists of two protocols:
- Deal (Share) allows one party (the dealer) to share a secret
- Reconstruct allows t+1 parties to compute the secret

Shamir secret sharing of a secret s:
Deal:
- Form a random degree-t polynomial p(x) such that p(0) = s
- Send p(i) to party i
Reconstruct:
- Party i shares p(i) with other parties
- Once t+1 parties have shared points, can reconstruct p(x) using
Lagrange interpolation

A TYPICAL DKG have everyone act as the

dealer in parallel

Pe(2)

ATYPICAL DKG perform reconstruction in

the exponent

K £2

Pe P
{p;(6)} \ {pj(1)};

- party i shares gril) for all j
- each party interpolates (in the exponent)
to get gri and computes [lgri= g2prj = gPr
- each party evaluates (in the exponent) to
compute and output pk = gr0)

e

.)
o hy

WHEN THINGS GO WRONG

WHEN THINGS GO WRONG
this is why

typical DKGs use\ P,
verifiable secret
sharing...
/ pe(1)

\

..and need an
extra complaints @,
round to agree on
which dealers’
polynomials to
include P3

11

BUILDING A DKG

1. Party i:
- acts as the VSS dealer
- participates in VSS sharing for all other parties j

2. All parties agree on a set of dealers D using a complaints round

3. Party ireconstructs, in the exponent, the sum of secrets for
dealers in D

so the best way to get a better (A)DKG is to build a better (A)VSS

12

BINGO [AJMMS 23]

Bingo is an AVSS that:

- allows secrets to be packed (share f+1 secrets with the same
complexity as one)

- has optimal resilience (n = 3f + 1)

- has O(n2) word complexity and O(1) round complexity

- allows for adaptive corruptions (new definitions of VSS
termination, correctness, and secrecy)

13

SHARING IN BINGO

- sample (X, Y) s.t. p(-k, O) = sk for o
all secrets sk (packing) dz
- broadcast commitment™ to ¢(X, Y) as
- setai= (X, 1), Bi= (i, Y) a
(meaning ai(j) = B;(i)) o

- send q; to party i

Bi B2 B3 Bs PBs

Vil Vi2 VI3 Vi4 VIS
V21 V22 V23 V24 V25
V31 V32 V33 V34 V35
V4l V42 V43 Vis V45

V51 V52 V53 V54 V55

the goal in Share is for each party i to learn their a; polynomial

*using a natural extension of KZG to bivariate polynomials
14

SHARING IN BINGO

Bi B2 B3 Bz PBs

Vil Vi2 VI3 Vi4 VIS
V21 V22 V23 V24 V25
V31 V32 V33 V34 V35
V4l V42 V43 Vis V45

V51 V52 V53 V54 V55

2@/5 the goal in Share is for each party i to learn their a; polynomial

15

SHARING IN BINGO

16

31

V11
V2,
V3,1
V4|

V5,1

B2 B3 Bs PBs

Vi2 VI3 Vi4 VIS5
V22 V23 V24 V25
V32 V33 V34 V35
V42 V43 Vih V45

V52 V53 V54 V55

SHARING IN BINGO

17

Bi B2 B3 Bz PBs

Vil Vi2 VI3 Vi4 VIS
V21 V22 V23 V24 V25
V31 V32 V33 V34 V35
V4l V42 V43 Vis V45

V51 V52 V53 V54 V55

SHARING IN BINGO

Bi B2 B3 Bs Ps

Vil V12 VI3 Vi4 V15

V21 V22 V23 V24 V25
V31 V32 V33 V34 V35
V41 V42 V43 V44 VA4S

send as(j) to party |
= party j learns [3;(5)

18

SHARING IN BINGO

Bi B2 B3 Bs Ps

Viz VI3 Vis4 VI5

\ € & G.]

Va1 V22 V23 V24 V25

V31 V32 V33 V34 V35

. V42 V43 Vas V45
. V52 V53 V54 V55

T

given enough points, party 1
can interpolate to learn [3;

19

SHARING IN BINGO

B2 B3 Bs PBs

Viz VI3 Vis4 VI5

1l1V22 V23 V24 V25
V32 V33 V34 V35

V42 V43 Vish V45

V52 V53 V54 V55

send [31(j) to party j
= party j learns q;(1)

20

SHARING IN BINGO

‘ B2 B3 [34

Vil V12 VI3 Vi4 V15

*’?
az V21 V22 V23 V24 V25
.. d

as V31 V32 V33 V34 V35

@@glven enough points, party 2
g can interpolate to learn a;!

Qs V41 V42 V43 Vis V45

as V51 V52 V53 V54 V55

21

SHARING IN BINGO

.)
. . y . ‘\ ‘ . &
Some hidden complexities: 1
- Parties have to prove correctness Br B2 Bs P4 Bs
of their evaluations (more work Qi Vil Vi2 VI3 Vi4 VIS

%

200,

for the commitment)

- All parties need to have the same
commitment (use reliable
broadcast [DXR21]) Q4 V41 V42 V43 Vih V45

- Adaptivity!

az V21 V22 V23 V24 V25

as V31 V32 V33 V34 V35

as V51 V52 V53 V54 V55

22

RECONSTRUCTION IN BINGO

can reconstruct
one secret at a time

- sample ¢(X, Y) s.t. p(-k, O) = sk for
all secrets sk (packing)

o) same old trick
- party j shares GJS/ (aj(-k) = B-«(j))
- interpolates B«

- evaluates sk = B-«(0)

~r Ve
A %
e

¥

"‘.' l < ‘-—‘r
Y S \'“,_
2
B
]

RECONSTRUCTION IN BINGO

— can also reconstruct
sums of secrets with
the same complexity!

- party j gets q;; when
| Is dealing
- computes q; = 2q;;
- shares qj(-k)
- interpolates B-«
- evaluates sk = B-«(0) X

N

(same for the batch
reconstruction of
multiple secrets)

BUILDING A DKG

1. Party i:
- acts as the VSS dealer
- participates in VSS sharing for all other parties |
2. All parties agree on a set of dealers D using a complaints round

3. Party ireconstructs, in the exponent, the sum of secrets for
dealers in D

25

BUILDING A DKG

1. Party i:
- acts as the Bingo dealer
- participates in Bingo sharing for all other parties |
2. All parties agree on a set of dealers D using a complaints round

3. Party i reconstructs, in the exponent, the sum of secrets for
dealersin D

- computes aq; = 2q;iforjinD
- shares gaj(-k)
- interpolates and evaluates to output pk = gb-k(0)

can do this by sending one
point rather than O(n)

20

BUILDING A DKG

1. Party i:
- acts as the Bingo dealer
- participates in Bingo sharing for all other partiesj VABA

2. All parties agree on a set of dealers D uSing a -e-esnseasgusesigmugssmngs
3. Party ireconstructs, in the exponent, the sum of secrets for

dealers in D

- computes a; = 2q;iforjinD

- shares gaj-k)

- interpolates and evaluates to output pk = gB-k(0)

27

VABA

Validated asynchronous Byzantine agreement (VABA) allows parties
to agree on a valid value

- all non-faulty parties complete the protocol and output the
same value

- this value is valid according to some external validity function
checkValidity

For us, checkValidity(dealers, sigs) outputs 1 iff:
- dealers‘ > f+1

- sigs‘ > f+1

- Verify(pk;, gj, dealers) for all (j, gj) in sigs

28

VABA [AJMMST21]

verifiable
gather

any set that passes verification
must be a super-set of this
common core

built this based on reliable broadcast

29

VABA [AJMMST21]

verifiable
gather

P4
P3 Ps
V|
i / \
| Py
\/
Ps

built this based on threshold VRFs and verifiable gather

30

VABA [AJMMST21]

validated
verifiable proposal asynchro.nous
- Byzantine
gather election
agreement
(VABA)

built this (“No Waitin’ Hotstuff”) based on proposal election

31

ADAPTIVELY SECURE VABA

based on Bingo

-

verifiable
gather

adaptive
proposal
election

adaptively secure
validated

asynchronous
Byzantine
agreement
(VABA)

32

ADKG PROTOCOLS

word round trusted high

complexity complexity setup? threshold? 20°PHVe

[KG10]*
[KMS20]
[APMMST21]
[DYXMKR22]
[GS22]

Our work

*assumes partial synchrony

w
w

THANKS!
ANY QUESTIONS?

