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Abstract

Despite their usage of pseudonyms rather than persistent identifiers, most existing cryptocurrencies
do not provide users with any meaningful levels of privacy. This has prompted the creation of privacy-
enhanced cryptocurrencies such as Monero and Zcash, which are specifically designed to counteract the
tracking analysis possible in currencies like Bitcoin. These cryptocurrencies, however, also suffer from
some drawbacks: in both Monero and Zcash, the set of potential unspent coins is always growing, which
means users cannot store a concise representation of the blockchain. Additionally, Zcash requires a
common reference string and the fact that addresses are reused multiple times in Monero has led to
attacks to its anonymity.

In this paper we propose a new design for anonymous cryptocurrencies, Quisquis, that achieves
provably secure notions of anonymity. Quisquis stores a relatively small amount of data, does not require
trusted setup, and in Quisquis each address appears on the blockchain at most twice: once when it is
generated as output of a transaction, and once when it is spent as input to a transaction. Our result
is achieved by combining a DDH-based tool (that we call updatable keys) with efficient zero-knowledge
arguments.
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1 Introduction
Bitcoin was introduced in 2008 [30], and at a high level it relies on the use of addresses, associated with
a public and private key pair, to keep track of who owns which coins. Users of the system can efficiently
create and operate many different addresses, which gives rise to a form of pseudo-anonymity. As is now
well known, however, Bitcoin and other cryptocurrencies relying on this level of pseudo-anonymity can, in
practice, have these addresses linked together and even linked back to their real-world identities with little
effort [33, 34, 3, 26, 37, 28].

Due to this, there has now been an extensive body of work aiming to provide privacy-enhanced solutions
for cryptocurrencies, although even some of these new solutions have also been subjected to empirical analyses
pointing out the extent to which they can be de-anonymized as well [29, 25, 27, 20, 19, 18, 40]. These solutions
typically fall into two main categories.

First, tumblers (also known as mixers or mixing services) act as opt-in overlays to existing cryptocur-
rencies such as Bitcoin [23, 36, 16] and Ethereum [24], and achieve enhanced privacy by allowing senders
to mix their coins with those of other senders. While these are effective and arguably have a high chance
of adoption due to their integration with existing cryptocurrencies, they also have some limitations. In
particular, they are generally either dependent on trusting a central mixer, which leaves users vulnerable to
attacks on availability, or they require significant coordination amongst the parties wishing to mix, which
leads to higher latency as users must wait for other people to mix with them.

Second, there are cryptocurrencies with privacy features built in at the protocol level. Of these, the ones
that have arguably achieved the most success are Dash [1], Monero [31], and Zcash [6]. Dash is derived
from a tumbler solution, Coinjoin [23], and thus inherits the properties discussed there. In Monero, senders
specify some number of addresses to “mix in” to their own transaction, and then use this list of public keys
to form a ring signature and hide which specific address was theirs. Observers of the blockchain thus learn
only that some unknown number of coins have moved from one of these input public keys. In Zcash, users
can put coins into a “shielded pool.” When they wish to spend these coins, they prove in zero-knowledge
that they have the right to spend some specific coins in the pool, without revealing which ones.

Between Monero and Zcash, there are already several differences. For example, because users in Monero
specify rings themselves, they achieve a form of plausible deniability : no one can tell if a user meant to
be involved in a given transaction, or if their address was simply used in a ring without their consent. In
Zcash, in contrast, every other user in a user’s anonymity set has no such deniability, as they at one point
intentionally put coins into the shielded pool.

One limitation central to both cryptocurrencies, however, is the information that peers in the network
are required to keep. In Bitcoin, the list of all addresses with a positive balance can be thought of as a set
of unspent transaction outputs (UTXOs). When a sender spends coins, their address ceases to be a UTXO,
so is replaced in the set with the address of their recipient. Full nodes can thus collapse the blockchain into
this UTXO set, and check for double spending simply by checking if a given input address is in the set or
not. In other words, it acts as a concise representation of the entire history of the blockchain. In October
2017, for example, there had been over 23 million Bitcoin transactions and the total size of the blockchain
was over 130 GB, but the size of the UTXO set was only 3 GB [12].

In Monero and Zcash, however, addresses can (essentially) never be removed from the UTXO set, as it
is never clear if an address has spent its contents or was simply used as part of the anonymity set in the
transaction of a different sender. The size of the UTXO set is thus monotonically increasing: with every
transaction, it can only grow and never shrink. This has a significant impact on full nodes, as they must
effectively store the entire blockchain without the option of the concise representation possible in Bitcoin.
Our Contributions We present Quisquis, a new design for anonymous cryptocurrencies that resolves the
limitations outlined above for existing solutions. In particular, users are able to form transactions on their
own, so do not need to wait for other interested users and incur the associated latency. They can also involve
the keys of other users without their permission, which gives the same degree of plausible deniability as
Monero. Finally, each transaction acts to replace all the input public keys in the UTXO set with all the
output public keys, thus allowing the UTXO set to behave in the same manner as in Bitcoin. Furthermore,
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our transactions are relatively inexpensive to compute and verify, taking around 471ms to compute and 71ms
to verify for an anonymity set of size 16, with proofs of size approximately 13kB.

As a brief technical overview, Quisquis achieves anonymity using a primitive that we formalize in Section 3
called updatable public keys, which allows users to create updated public keys, indistinguishable from ones
that are freshly generated, without changing the underlying secret key. After formally defining our threat
model in Section 4, we present our full construction of Quisquis in Section 5. Roughly, senders take the keys
of other users, including their intended recipients, to form a list of public keys that act as the input to a
transaction. A sender can now “re-distribute their wealth” among these input keys, acting to move some of
their own coins to the recipient and keeping the (hidden) balances of the other members of the anonymity
set the same. To ensure anonymity, the output public keys are all updated, and all balances and amounts are
given only in committed form. Thus, by design, in Quisquis every address can only ever appear at most twice
on the blockchain: once when it is generated in the output of the transaction, and once when it is spent as
input to a different transaction. This greatly reduces (compared, e.g., to Monero) the ability of an attacker
to perform de-anonymization attacks based on how often a certain address participates in transactions.

To ensure integrity, the sender proves in zero-knowledge that they have correctly updated the keys
and have not taken money away from anyone except themselves. Crucially, because the witness for the
zero-knowledge proof is limited to this single transaction (as opposed to encompassing other parts of the
blockchain), we can use standard discrete-log-based techniques as opposed to the heavyweight zk-SNARKs
required in Zcash. This means that security can depend entirely on DDH, and no trusted setup is required (as
we use the random oracle model to make the proofs non-interactive and to generate other system parameters
and random values using “nothing up my sleeves” methods). As the design of Quisquis is modular, other
tradeoffs could be achieved as well: for instance, it could be possible to instantiate Quisquis with zk-SNARKs
as well, thus achieving even smaller transactions and faster verification at the cost of much slower transaction
generation and the stronger assumptions underlying zk-SNARKs.

To demonstrate the efficiency of Quisquis, we implement it and present performance benchmarks in
Section 7. We then provide a thorough comparison with existing solutions in Section 8 before concluding in
Section 9.

2 Cryptographic Primitives

2.1 Notation
Let logg h be the discrete log of h with respect to g. Define (a, b)c := (ac, bc) and (a, b) · (c, d) := (ac, bd).
For vectors ~a and ~b, let ~a ◦~b be the Hadamard product of ~a and ~b; i.e., the vector ~c such that ci = aibi. We
use y ← A(x) to denote assigning to y the output of a deterministic algorithm A on input x, and y $← A(x)
if A is randomized; i.e., we sample a random r and then run y ← A(x; r). We use [A(x)] to denote the set
of values that have non-zero probability of being output by A on inputs x. We use r $← R for sampling an
element r uniformly at random from a set R. If ~y = (y1, . . . , yn) $← A(x) then we often denote yi by ~yi.

2.2 Zero-knowledge arguments of knowledge
Let R be a binary relation for instances x and witnesses w, and let L be its corresponding language; i.e.,
L = {x | ∃w : (x,w) ∈ R}. An interactive proof is a protocol where a prover P tries to convince a verifier
V , by an exchange of messages, that an instance x is in the language L. The set of messages exchanged is
known as a transcript, from which a verifier can either accept or reject the proof. The proof is public-coin
if an honest verifier generates his responses to P uniformly at random. An interactive proof is a special
honest-verifier zero-knowledge argument of knowledge if it satisfies the following properties:

• Perfect completeness: if x ∈ L, an honest P always convinces an honest V .

• Special honest-verifier zero-knowledge (SHVZK): there exists a simulator S that, given x ∈ L and an
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honestly generated verifier’s challenge c, produces an accepting transcript which has the same (or indis-
tinguishably different) distribution as a transcript between honest P, V on input x.

• Argument of knowledge: if P convinces V of an instance x, there exists an extractor with oracle access to
P that runs in expected polynomial-time to extract the witness w.

A public-coin SHVZK argument of knowledge can be turned into a non-interactive zero knowledge (NIZK)
argument of knowledge using the Fiat-Shamir heuristic. Essentially, non-interactivity is achieved by replacing
the verifier’s random challenge with the output of a hash function, which in the security proof is modeled as
a random oracle.

2.3 Commitments
We use a commitment scheme Commit relative to a public key pk that, given a message m ∈ M and
randomness r ∈ R, computes com ← Commitpk(m; r). Our commitments must satisfy two properties:
first, they are computationally hiding, meaning for any two messages m0,m1, an adversary has negligible
advantage in distinguishing between Commitpk(m0;UR) and Commitpk(m1;UR), where UR is the uniform
distribution over the randomness space. Second, they are unconditionally binding, meaning even given the
sk relative to pk, a commitment cannot be opened to two different messages.

Beyond these two basic properties, we require two extra properties from our commitments. First, they
must be homomorphic in the sense that for some operation � it holds that Commitpk(m)�Commitpk(m

′) =
Commitpk(m + m′) (for appropriate randomness). Second, they must be key-anonymous, meaning that for
any honestly generated keys pk0, pk1 and adversarially chosen m, the tuple (m, pk0, pk1,Commitpk0(m)) is
indistinguishable from (m, pk0, pk1,Commitpk1(m)).

We can construct such commitments in a group (G, g, p) where the DDH problem is hard, by essentially
performing an ElGamal encryption in the exponent relative to public keys of the form pk = (gi, hi) (which
are what we use in our later constructions). In particular, Commitpk(v; r) returns com = (c, d) where c = gi

r

and d = gvhi
r. It is easy to verify that this commitment scheme is unconditionally binding, computationally

hiding, key-anonymous, and additively homomorphic.
Finally, we also use extended Pedersen commitments in the constructions of our zero-knowledge (ZK)

arguments; i.e., schemes that commit to a vector of values using a single group element.

3 Updatable Public Keys
This section introduces the notion of an updatable public key (UPK), in which public keys can be updated
in a public fashion, and such that they are indistinguishable from freshly generated keys. This idea has been
considered before in the context of several cryptographic primitives, such as signatures [14, 4] and public-key
encryption [39], but we wish to define it solely for keys, regardless of the primitive they are used to support.

We begin by defining security for UPKs. Our definitions of indistinguishability and unforgeability resem-
ble those that have already been used for Bitcoin stealth keys [24] and in the context of other cryptographic
primitives [4, 39, 22].

Indeed, we could continue to be inspired by stealth keys in our construction of a UPK scheme, but given
their reliance on hash functions this would render us unable to prove statements about the keys using discrete
log-based techniques, as we would like to do in our construction of Quisquis in Section 5. We thus present
instead a purely algebraic UPK scheme based on DDH, inspired by “incomparable public keys” [39].

3.1 Security definitions
An updatable public key system (UPK) is described by the following algorithms:

• params $← Setup(1κ) outputs the parameters of the scheme, including the public and secret key spaces
PK,SK. These are given implicitly as input to all other algorithms.
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• (pk, sk) $← Gen(1κ) takes as input a security parameter κ and outputs a public key pk ∈ PK and a secret
key sk ∈ SK.

• ({pk′i}ni=1) $← Update({pki}ni=1) takes as input public keys (pk1, . . . , pkn) and outputs a new set of public
keys (pk′1, . . . , pk

′
n).

• 0/1← VerifyKP(pk, sk) takes as input pk ∈ PK and sk ∈ SK and checks whether or not (pk, sk) is a valid
key pair.

• 0/1 ← VerifyUpdate(pk′, pk, r) takes as input public keys pk′, pk, and randomness r and checks if pk′ was
output by Update(pk; r).

We require a UPK to satisfy the following properties.

Definition 1 (Correctness). A UPK satisfies perfect correctness if the following three properties hold for all
(pk, sk) ∈ [Gen(1κ)]: (1) the keys verify, meaning VerifyKP(pk, sk) = 1; (2) the update process can be verified,
meaning VerifyUpdate(Update(pk; r), pk, r) = 1 for all r ∈ R; and (3) the updated keys verify, meaning
VerifyKP(pk′, sk) = 1 for all pk′ ∈ [Update(pk)].

We next define indistinguishability, which says that an adversary cannot distinguish between a freshly
generated public key and an updated version of a public key it already knows.

Definition 2 (Indistinguishability). Consider the following experiment:

1. (pk∗, sk∗) $← Gen(1κ);

2. pk0
$← Update(pk∗);

3. (pk1, sk1) $← Gen(1κ).

A UPK satisfies indistinguishability if for any PPT adversary A:

|Pr[A(pk∗, pk0) = 1]− Pr[A(pk∗, pk1) = 1]| ≤ negl(κ).

Finally, we require that an adversary should not be able to learn the secret key of an updated public
key (unless it already knew the secret key for the original public key). This is formalized by saying that the
adversary cannot produce a public key for which it knows both the secret key and the randomness needed
to explain this public key as an update of an honestly generated public key.

Definition 3 (Unforgeability). A UPK satisfies unforgeability if for any PPT adversary A:

Pr[VerifyKP(pk′, sk′) = 1 ∧ VerifyUpdate(pk′, pk, r) = 1

| (pk, sk) $← Gen(1κ); (sk′, pk′, r) $← A(pk)] ≤ negl(κ).

3.2 UPKs from DDH
We present a construction of UPK based over a prime-order group (G, g, p) where the DDH assumption is
believed to hold. Thus, our Setup outputs only publicly verifiable parameters, and does not need to be run
by a trusted party. The rest of the algorithms are as follows:

• Gen(1κ): Sample r, sk $← Fp and output pk = (gr, gr·sk).

• Update({pki}ni=1): Parse pki = (gi, hi). Sample r $← Fp and compute pk′i = pkri = (gri , h
r
i ) for all i.

• VerifyKP(pk, sk): Parse pk = (g′, h′) and output (g′)sk
?
= h′.

• VerifyUpdate(pk′, pk, r): Output Update(pk; r)
?
= pk′.
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Lemma 1. The scheme above is a UPK satisfying Definitions 1 - 3 if the DDH assumption holds in (G, g, p).

Proof. Correctness is straightforward to verify. To prove indistinguishability, our reduction receives a DDH
challenge chl = (g, gx, gy, gz), samples a value r $← Fp, and defines pk∗ = (gr, gxr) and pk′ = (gyr, gzr).
It then invokes the indistinguishability adversary A on input (pk∗, pk′). If chl is a DDH tuple then pk′

is distributed identically to pk0, and if chl is not a DDH tuple then pk′ is distributed identically to pk1.
Therefore, our reduction has the same (non-negligible) advantage in the DDH game as the A has in the
indistinguishability game.

To prove unforgeability, our reduction receives a DL challenge chl = (g, h), picks a random t $← Fp, and
sets (g0, h0) = (gt, ht). The reduction now runs (s, (g1, h1), r) $← A(g0, h0), and outputs s. The input to the
adversary in the reduction is distributed identically as in the definition of security. The winning condition of
the security definition requires that h1 = gs1 and (g1, h1) = (gr0, h

r
0) = (grt, hrt) thus implying that gsrt = hrt

or equivalently that h = gs, meaning s is a valid solution to the DL oracle.

4 Threat Model
In this section, we present our model for cryptocurrency transactions, in which we view a transaction not
as just transferring value from a sender to a recipient but as participants “re-distributing wealth” amongst
themselves. Before presenting this model in Section 4.2, we first present the notion of an updatable account
in Section 4.1, which is an extension of updatable public keys that associates them with a (hidden) balance;
this is mainly done as a way to simplify notation in future sections. We then present the relevant notions of
security in Section 4.3, focusing on anonymity (meaning no one can identify the “true” sender and recipient
within the set of participants in a transaction) and theft prevention (meaning no one can steal the coins of
other people or otherwise inflate their own wealth).

4.1 Updatable accounts
To represent an account in a cryptocurrency, we use pairs acct = (pk, com) of public keys, which act as the
pseudonym for a user, and commitments, which represent the balance associated with that public key.

In more detail, each account carries a balance bl ∈ V, where V ⊂M; i.e., the domain of values is a subset
of the messages that can be committed to using Commit. To create a new account with initial balance bl ∈ V,
one can run (acct, sk) $← GenAcct(1κ, bl), which internally runs (pk, sk) $← Gen(1κ) and com $← Commitpk(bl),
sets acct = (pk, com), and returns (acct, sk).

To verify that an account has a certain balance, it is necessary to be able to open a commitment
using the secret key corresponding to pk. This also allows the owner of sk to open a commitment or
prove statements about the committed message even without knowing the randomness used. We use
the notation VerifyCom(pk, com, sk,m), and require the commitment to be binding also with respect to
this function; i.e., that no PPT adversary can output (pk, com, sk,m, sk′,m′) with m 6= m′ but such
that VerifyCom(pk, com, sk,m) = VerifyCom(pk, com, sk′,m′) = 1. With this algorithm in place, one can
run 0/1 ← VerifyAcct(acct, (sk, bl)), which parses acct = (pk, com) and outputs 1 if VerifyCom(pk, com,
(sk, bl)) = 1 and bl ∈ V and 0 otherwise.

For an account acct = (pk, com), observe that the output of VerifyAcct is agnostic to updates of the public
key; i.e.,

VerifyAcct((pk, com), (sk, bl)) = VerifyAcct((Update(pk), com), (sk, bl)).

Additionally, VerifyAcct is agnostic to re-randomizations of the commitment; i.e., VerifyAcct((pk, com), (sk, bl)) =
VerifyAcct((pk, com� Commitpk(0; r)), (sk, bl)).

Thanks to these observations, we are able to “update” accounts using the following notation:

• {acct′i}ni=1
$← UpdateAcct({accti, vi}ni=1; r1, r2) takes as input a set of accounts accti = (pki, comi) and val-

ues vi such that |vi| ∈ V, and outputs a new set of accounts (acct′1, . . . , acct
′
n) where acct′i $← (Update(pk; r1),

com� Commitpk(vi; r2)).
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• 0/1← VerifyUpdateAcct({acct′i, accti, vi}ni=1; r1, r2) outputs 1 if {acct′i}ni=1 = UpdateAcct({accti, vi}ni=1; r1, r2)
and |vi| ∈ V, and 0 otherwise.

4.2 The cryptocurrency setting
Modeling the security of a cryptocurrency is a complex problem, as there are many different actors operating
at different layers of the protocol: a user wishing to send some coins creates a transaction, which is then
broadcast to their peers in a peer-to-peer network. Those peers in turn perform some cryptographic validation
of the transaction, and if satisfied broadcast it to their peers. Eventually, it reaches a miner or validator,
who engages in some form of consensus protocol to confirm the transaction into the blockchain.

For the sake of simplicity, we focus solely on the transaction layer of a cryptocurrency, and assume
network-level or consensus-level attacks are out of scope; i.e., we assume that the system is free from eclipse
attacks [17] or other de-anonymization attacks that depend on network-level information (such as IP ad-
dresses) and that an adversary is not sufficiently powerful to prevent honest transactions from being added
to the blockchain or to add malicious transactions of their own.

Rather than use the traditional model of having a sender, in possession of some secret key and a coin,
send this coin to a recipient, we instead consider a set of participants who want to redistribute wealth amongst
themselves. This means we now model a transaction as taking place amongst a set of participants P who act
as both the senders and the recipients in the transaction, and who each come in with some initial balance
bl0,i and end with some balance bl1,i.

This still captures the traditional model of keeping senders and recipients separate, because for a sender
S sending one coin to a recipient R we can use P = (pkS , pkR), bl0 = (1, 0), and bl1 = (0, 1). The natural
question, however, is who is required to authorize this transaction; for efficiency reasons we do not want
every participant to have to do so, but to ensure that parties cannot simply steal each others’ money we
do need permission on behalf of the “true” senders. The simple way to provide both these properties is to
require authorization only on behalf of the public keys whose associated balance has gone down; i.e., for
every pki ∈ P such that bl1,i − bl0,i < 0.

Again, this model fully captures the traditional model of senders and recipients, but crucially makes it
easier to reason about cryptocurrencies designed to provide anonymity. More formally, a transaction layer
for cryptocurrencies consists of (Setup,Trans,Verify), as defined below.

The setup algorithm state $← Setup(1κ, ~bl) generates the initial state of the system. The vector ~bl
represents the initial balance of the accounts in the system and it must be such that bli ∈ V and

∑
i bli ∈ V.

We assume that Setup runs (accti, ski) $← GenAcct(1κ, bli) at some point, and that the state contains a set
UTXO consisting of all accounts accti. All other algorithms take as input the (current) state even when
omitted, and the state is updated in ways other than through these algorithms (e.g., by miners producing
blocks at the network layer).

To create a transaction, a sender in posession of a secret key sk runs tx← Trans(sk,P, A,~v).1 The vector
of values ~v ∈ V represents the desired change in balance for each participant, meaning they should end up
with bl1,i = bl0,i + vi (where bl0,i is their initial balance according to state). In creating a transaction, the
sender may want to achieve some degree of anonymity, meaning they want to hide the link between their
accounts and those of the recipient. To this end, we introduce an anonymity set A, which consists of other
accounts used to hide information about the sender. It is important that these accounts are “eligible” in
some way (where this depends on the concrete system, but can mean for example that they have not yet
spent their contents). If A is not explicitly specified, it is picked at random from the set of eligible accounts.
We denote by tx[inputs] = P ∪A the input accounts in a transaction, and by tx[outputs] the output accounts.

Finally, 0/state← Verify(state, tx) checks if a transaction is valid given the current state. If so, it outputs
an updated state, and if not it outputs 0.

We say a state is valid if it is output by Setup or if it was the output of Verify(state′, tx) for a valid state′ and
a transaction tx output by Trans. We say a transaction layer preserves value if for any valid state′ 6= ⊥ derived

1For simplicity we consider a single sender but the notation can easily be generalized to allow for arbitrarily many.
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from a valid state, ValueOf(state.UTXO) = ValueOf(state′.UTXO), where ValueOf computes the number of
coins associated with the UTXO set induced by a state.

4.3 Security
Intuitively, an anonymous cryptocurrency should provide anonymity for both the sender and the recipient,
meaning that even they cannot identify which accounts belong to whom. From an integrity perspective, it
is also important to guarantee theft prevention, meaning an adversary can transfer value only from accounts
for which it knows the secret key (and thereofore the adversary cannot reduce the balance of the honest
parties either).

Regardless of the goal, the basic outline of our security experiment is the same, in order to capture
the different ways an adversary can interact with honest participants in the system. For example, the
adversary can instruct honest participants to engage in transactions, or form arbitrary (i.e., fully adversarial)
transactions itself, as long as they are valid.

Intuitively, the adversary begins by specifying the initial balances ~bl of all participants in the protocol.
We continue this full control by allowing the adversary to direct honest parties to make specific transactions
(via transact queries), and to inject fully malicious transactions in the system (via verify queries). It
can also learn the secret key for any account in the system (via disclose queries), although here we must
be careful to prevent “trivial” attacks resulting from these disclosures in challenge queries (in which the
adversary specifies two different senders, recipients, and values, and tries to guess between transactions
involving them).

These trivial attacks include: (1) the adversary controls the secret key of one or both of the senders; (2)
the adversary controls the secret key of a recipient, and (3) the adversary specified a sender who does not
have enough funds to complete the specified amount (meaning the output of Trans is ⊥ in this case but not
the other). Formally, our game is defined as follows:

1. b $← {0, 1};

2. ~bl $← A(1κ);

3. state $← Setup(1κ, ~bl);

4. b′ $← AO(·)(state).

Part of Setup involves running (accti, ski) $← Gen(1κ, bli), and we assume that this results in the values
(i, accti, ski, bli) being stored in memory available to the oracle.

For several of the oracle queries, there is some bookkeeping required to update the keys and balances
associated with these records. We define this bookkeeping subroutine with respect to a transaction tx and two
sets honest and corrupt as follows: For every acctj ∈ tx[outputs] identify the corresponding accti ∈ tx[inputs]
such that skj = ski. For every such j, create a new record of the form (j, acctj , ski, bli + v′i), where v′i is
either (1) vi if i ∈ P or (2) 0 if i ∈ A. Then, reset the value for every accti ∈ tx[inputs]; i.e., save the record
(i, accti, ski, 0). Finally, for every pair (i, j) as above: if i ∈ honest add j to honest, else add j to corrupt.

Initialize honest to be the set of all indices i in memory, and corrupt to be the empty set. The oracle O(·)
allows the following queries:

• (disclose, i): If (i, accti, ski, bli) was stored, call J the set of all j such that there is a record (j, acctj , skj , blj)
with ski = skj . Remove i and J from honest, add them to corrupt, and return (ski, bli, J, {blj}j∈J) to the
adversary.

• (transact, i,P, A,~v): If (i, accti, ski, bli) was not stored return ⊥. Otherwise run tx $← Trans(ski,P, A,~v),
and state′ ← Verify(state, tx). If state′ 6= ⊥ update state = state′, run the bookkeeping for tx, and return
tx.

• (verify, tx): run state′ ← Verify(state, tx). If state′ 6= ⊥ update state = state′, run the bookkeeping for tx,
and return state′.

7



• (challenge, b, (i0, i1, j0, j1, A, v0, v1)): Let A0 = A1 = A. If (1) i0 ∈ corrupt or i1 ∈ corrupt, (2) j0 ∈ corrupt
or j1 ∈ corrupt (except if j0 = j1 and v0 = v1), (3) bli0 < v0 or bli1 < v1, then halt and return 0 (i.e., the
adversary lost the game). Otherwise, for x ∈ {0, 1}, if i0 6= i1 add i1−x to Ax, and if j0 6= j1 add j1−x to
Ax. Now compute txx ← Trans(skix , {acctix , acctjx}, Ax, (−vx, vx)). If Verify(state, txx) = ⊥, then again
we say the adversary lost the game. Otherwise, run the bookkeeping for txb.

After a challenge query, the oracle halts; i.e., it outputs ⊥ as the response to all future queries.

In terms of the concrete security notions discussed above, we say that the adversary wins the anonymity
game if b′ = b and the adversary did not lose the game as the result of some invalid query during the game.
We define the advantage of the adversary as the probability that the adversary wins subtracted by 1/2, and
say that:

Definition 4. Anonymity holds if no PPT A has non-negligible advantage in the anonymity game.

Note that our definition of anonymity does not depend on the size of the anonymity set. Instead, our
definition guarantees that, from the point of view of the adversary, a transaction is as likely to have been
generated by any of the accounts in the input of the transaction (excluding those that the adversary owns
or has corrupted).

We say that the adversary wins the theft prevention game if, as a result of any verify query: (1) there
exists an account j ∈ honest whose balance decreases or (2) the total wealth of the adversary increases; i.e.,
the sum of the balance of accounts in the set corrupt increases. (For this property, we could modify the game
so that the adversary just outputs ⊥ and does not need to make any challenge queries). Again, we say
that:

Definition 5. Theft prevention holds if no PPT A can win the theft prevention game with non-negligible
probability.

Note that theft prevention as defined above trivially implies protection from double spending attacks.
Finally, we address several seeming limitations in our definition, which have all been introduced for ease of

notation and the sake of readability but which are not necessary for our construction. First, our challenge
queries consider only a single recipient, but could be generalized to handle sets of recipients. Second, we
do not consider adversarially generated keys (allowing the adversary only to corrupt honest keys), but we
could capture this by changing the second step to allow the adversary to output a list of its own accounts.
We would then have to process these accounts into records (in order to keep track of their balances) and
restrict which keys could be used for which oracle queries; requiring, e.g., that transact only be used for
non-adversarial keys. Finally, our current definition has the “IND-CCA1”-style requirement that after the
first challenge query, the adversary cannot make any other queries. To generalize the definition to allow for
this, the oracle would have to keep track of two balances bl0 and bl1 for each account after the challenge
query, where blb represents the balance of each account in the “world” in which transaction txb was performed.
This is necessary to prevent an additional type of trivial attack, in which the adversary made a transact
query requiring the sender to transfer more than min(bl0, bl1): in one of the two worlds this would force the
oracle to return ⊥, which would trivially leak b. Again, all of these limitations were adopted to simplify
presentation, but (as should be made clear in the next two sections) our construction would also satisfy the
stronger definition relative to a modified game without these restrictions.

5 Our Quisquis Construction

5.1 Overview and intuition
To get a sense of how Quisquis works, let’s suppose that Alice wants to anonymously send 5 coins to Bob,
and start with a strawman solution in which values are visible in the clear and associated with updatable
public keys. To form a transaction, Alice identifies n− 1 unspent keys with exactly 5 coins associated with
them. She then uses these keys, in combination with her own, as the input to the transaction. To form the
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output keys, she replaces her key with Bob’s key, and updates all the other keys. Finally, she forms a ZK
proof that she has created the output keys properly; i.e., that she knew the private key for any public keys
that were replaced, and that she formed the other output keys by performing a valid update of the input
ones. The final transaction consists of the lists of input and output keys, their associated values, and the
ZK proof.

This solution allows Alice to use the other input keys as an anonymity set, but only in the restrictive
setting in which she has the exact value she wants to send to Bob stored in one of her keys, and she can
find multiple other keys with that same value. To address these issues, we first shift to the “re-distribution
of wealth” model introduced in Section 4. Rather than replace her own key with Bob’s key, she instead adds
Bob’s key to the list of input keys. If she picks two others keys pk0 and pk1 and forms P = (pk0, pk1, pkA, pkB),
then even if she has 9 coins stored in her key she can still send Bob 5 coins by using ~v = (0, 0,−5,+5).

The problem with this new solution, of course, is that it has no anonymity: anyone can look at ~v and
see who the real senders and recipients are. To hide these values, we switch to using the updatable accounts
described in Section 4.1, which means including only commitments to the account balances. The main
additional complexity is now in proving that the transaction has been formed correctly, and in particular
proving that it does not take money away from anyone other than the real sender. Intuitively, Alice can do
this by proving that for every output key, either she knows the secret key for the corresponding input key,
or the balance corresponding to that key did not decrease; i.e., the difference between its balance and the
balance of its input key is non-negative.

This also supports the case in which Alice wants to consolidate the coins associated with multiple account,
as she can include these accounts in both the input and output lists but re-distribute her money so that it
all ends up in one of them. This exposes an issue for efficiency, however, which is that once an account has
a balance of 0 it is wasteful to leave it in the UTXO set. Thus, to “destroy” an output account, Alice can
prove that its committed balance is 0, which signals to others to remove it from the UTXO set.

Conveniently, the technique of proving that a committed value is 0 can also be used to create a new
account. This has a positive effect on Bob’s anonymity (and communication overhead), as he can now send
Alice a regular key once rather than providing a new account every time she wants to send him money.
To use this key in the input list, Alice can first update it (to get a new random-looking key), generate a
commitment relative to this public key (i.e., generate a new account for it), and prove that its committed
balance is 0.

5.2 Transactions in Quisquis
Before describing the algorithms needed to form and verify transactions, we first describe how to instantiate
the updatable accounts introduced in Section 4.1. Combining the commitment scheme from Section 2.3
and the UPK scheme from Section 3.2, we get accounts of the form (pki, comi) = ((gi, g

sk
i ), (gri , g

vgsk·ri )).
This already gives us most of the properties we need, and guarantees that |V| � |M| as long as we use
V = {0, . . . , V }, where V is an upper bound on the maximum possible number of coins in the system
(e.g., the limit of V = 2.1 × 1015 < 251 satoshis in Bitcoin, compared to M = {0, . . . , p − 1} for a 256-
bit prime p in the commitment scheme). All it thus remains to show is that the owner of the secret key
corresponding to pk = (g, h) can open the commitment. To do this, we can define the additional algorithm
VerifyCom(pk, com, sk, v) as parsing com = (c, d) and then checking that VerifyKP(pk, sk) = 1 and d = gv ·csk.
For every (pk, com) there exists exactly one pair (sk, v) for which VerifyCom outputs 1, so the commitment
is unconditionally binding even with respect to this type of opening.

5.2.1 Setup

On input 1κ, Setup returns as state the output of Setup for the UPK scheme, and a list of all current accounts
(which may be empty).
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5.2.2 Trans

As discussed in the overview, Quisquis allows a sender to “re-distribute” their wealth to one or more recipients,
by including their accounts in both the input and output lists that comprise the transaction. In what follows
we assume that transactions have a fixed number n of both inputs and outputs.

Suppose a transaction is meant to transfer v coins from a sender to a recipient. To hide the identity of
the sender and recipient, the Trans algorithm picks an anonymity set A of size n − 2 uniformly at random
from the set of all unspent transaction outputs, and creates a vector ~v = (v,−v, 0, . . . , 0). It then updates all
these accounts by running UpdateAcct. Intuitively, the properties of updatable accounts guarantee that the
individual accounts that are generated as output of UpdateAcct cannot be tied to the input of the function.
However, the ordering still reveals the link between the input and outputs. We thus simply present the input
and output lists in some canonical (e.g., lexicographical) order. Because the updated keys are distributed
uniformly at random, this can be thought of as applying a random permutation ψ to shuffle the updated
accounts.

Finally, to ensure that malicious parties cannot steal funds from honest users, the transaction must contain
a NIZK proof π that the output of the transaction has been computed following the protocol specification.

To summarize, tx $← Trans((s, sks, bls),P, A,~v) performs the following steps:

1. First, check that the input is valid by parsing P = {acct1, . . . , acctt} and checking that VerifyAcct(accts, sks,
bls) = 1. Then check that the vector ~v satisfies: (1)

∑
i vi = 0, (2) ∀i 6= s : vi ∈ V (i.e., is positive), (3)

−vs ∈ V and (4) bls + vs ∈ V.

2. Let inputs = P ∪ A in some canonical order and ~v′ be the permutation of ~v under the same order. Let
s∗,R∗, A∗ denote the indices of the respective accounts of the sender, the recipients, and the anonymity
set in this list; i.e., it now holds that −v′s∗ ∈ V, v′i ∈ V ∀i ∈ R∗ and v′i = 0 ∀i ∈ A∗.

3. Let outputs be the output of UpdateAcct(inputs, ~v′; r) in some canonical order.

4. Let ψ : [n]→ [n] be the implicit permutation mapping inputs into outputs; i.e., such that accounts inputsi
and outputsψ(i) share the same secret key.

5. Form a zero-knowledge proof π of the relation R(x,w), where x = (inputs, outputs), w = (sk, bl, ~v′, r =
(r1, r2), ψ, s∗,R∗, A∗), and R(x,w) = 1 if for all i ∈ [n], j = ψ(i), accti ∈ inputs, acctj ∈ outputs:

VerifyUpdateAcct(acctj , accti, r, 0) = 1 ∀i ∈ A∗

∧ (VerifyUpdateAcct(acctj , accti, r, v
′
i) = 1 ∧ v′i ∈ V) ∀i ∈ R∗

∧ VerifyUpdateAcct(acctψ(s∗), accts∗ , r, v
′
s∗) = 1

∧ VerifyAcct(acctψ(s∗), sk, bl + v′s∗) = 1

∧
∑
i

v′i = 0.

Then the final transaction is tx = (inputs, outputs, π).
Due to the way transactions are generated, every address appears at most twice in Quisquis: once when it

is created in the output of some transaction, and once when it appears as the input of some other transaction
(regardless of whether it is the real sender or just an account added for anonymity). In particular, unlike in
Monero the same account cannot be used as part of the anonymity set for two different transactions, since
it will have been updated in the meantime and thus replaced in the UTXO set.

5.2.3 Verify

The Verify algorithm ensures the validity of a transaction by checking that all the accounts in tx[inputs] are
considered unspent in the current state, and by running the verification algorithm for the NIZK argument.

10



Additionally, upon receiving a transaction in which one of their accounts was included in tx[inputs], it
is necessary for users to identify which (if any) of the accounts in outputs belongs to them. (If no such
account appears in the inputs then they do not need to process the transaction further.) To do this, they
first identify the secret key sk corresponding to their account in tx[inputs]. They then go through every
(pk, com) ∈ tx[outputs] and run b← VerifyKP(pk, sk). If b = 1, they replace their own existing record of that
account with acct = (pk, com).

The user should then figure out whether their address was an actual recipient of the transaction or whether
it had only be used as part of the anonymity set. They can start by running VerifyAcct(acct, sk, bl) = 1,
where bl was their balance before the transaction; if this passes, then their account was used as part of
the anonymity set so their balance is unchanged. Otherwise, they need to find out the value v by which
their balance was increased. For simplicity here we assume that the values v are small enough, say 32 bits
(for comparison, the total number of satoshis that will ever exist is 251), so that computing v from gv is
computationally easy, and therefore the user can “brute force” their new account. Again, this is necessary
only in the case of transactions that include their accounts as part of the input (and transactions creating
new accounts); no other transactions can change the balance of a user’s account.

The design can be easily extended for larger values of v: for instance, we can (1) require that senders
communicate the value vi to their recipients off-chain or (2) append to the transaction an encryption of vi
under the public key of the receiver, together with a proof that the encryption contains the correct value
(using, e.g., a similar approach to Zether [10]).

5.2.4 Creating and removing accounts

The described scheme above supports the basic functionality of making anonymous payments, but as de-
scribed in the overview in Section 5.1 it is possible to improve on the efficiency of this basic protocol. In
particular, newly created accounts and fully spent accounts both have a (provable) balance of 0. Allowing
users to create new accounts improves the overall communication overhead and anonymity of the system,
since users can send one long-term key to potential senders rather than a new account every time (which
would also reveal to the sender the transaction in which this account was created). Allowing users to destroy
empty accounts reduces the storage overhead of the system, since other users do not have to keep track of
accounts that have no contents left to spend.

We denote the respective algorithms used to perform creating and removing accounts by CreateAcct and
DestroyAcct.

• acct = (pk′, com), π) $← CreateAcct(pk) is such that pk′ ∈ [Update(pk)], com = Commitpk′(0; r) for some
r, and π is a ZK proof for the relation R(x,w), where x = (pk′, com), w = r, and R(x,w) = 1 if
com = Commitpk′(0; r). Again, this algorithm can be run by anyone in possession of a public key for a
user, which allows senders to send money to recipients without requiring their participation.

• π $← DestroyAcct(sk, acct) is such that π is a ZK proof for the relation R(x,w), where x = acct, w = sk,
and R(x,w) = 1 if VerifyAcct(acct, (sk, 0)) = 1.

Proofs of this type can optionally be included in transactions, and have the effect that upon verification
users remove the corresponding acct from the list of active accounts. The zero-knowledge proofs involved in
both CreateAcct and DestroyAcct are standard proofs of relations between discrete logarithms, so we do not
include descriptions of them here.

5.2.5 Mining fees

As currently described, Quisquis does not provide any incentives for miners to include transactions, due to
the lack of fees. More crucially, it assumes the total balance of the system is fixed during Setup, so does not
capture the ability to mine new coins.

To add transaction fees to the Trans algorithm, we can add the fee f as an input and change the require-
ment on the vector ~v to be f +

∑
i vi = 0. Assuming the fee is public (as it is in other privacy-enhanced cur-

rencies like Zcash), this does not add any complexity to the zero-knowledge proof. So, let (tx1, f1, . . . , txm, fm)
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be a set of transaction that a miner wants to add to the blockchain. To collect the fees and add a block
reward rwd, the miner can simply generate a new account (acct, sk)← GenAcct(1κ, rwd +

∑
i fi) and a proof

that the balance of this account is equal to the block reward plus the sum of fees present in the block.
The initial balance is thus public, but as soon as it is used in any further transaction the usual anonymity
guarantee is preserved.

5.2.6 Concurrent transactions

Although it is somewhat out of scope of the core cryptographic design, we briefly discuss here how a cryp-
tocurrency based on the Quisquis design might deal with concurrent transactions, in which two users both
try to use the same account in their anonymity set at roughly the same time (and there is thus a non-empty
intersection between the two tx[inputs]). Since each address can appear only once as input in Quisquis, this
requires at least one of the two transactions to be rejected by the system. We propose here two simple
approaches for dealing with this, although the probability of having such a collision could be quite low
(depending on system parameters such as the frequency of transactions, the network latency, etc.).

The first heuristic is “reject and wait”: if two conflicting transactions are received in the same time period,
they are both rejected and the users are instructed to wait and attempt the transaction again. The second
heuristic is “first come first serve”: the transaction that is first received is approved and the second one is
rejected. The sender of the second transaction is free to send a new transaction as soon as they want.

The first proposal might be better for anonymity, since – thanks to the waiting time – many (or even
all) addresses in the original anonymity sets might have left the UTXO set (after being chosen as part of
the anonymity set of other transactions) and been replaced by new random-looking accounts. The second
proposal ensures lower latency, but might reduce the privacy of the second transaction: if all accounts in
the intersection were part of the anonymity set, the sender might simply replace those and effectively run
a transaction with a smaller anonymity set. On the other hand, if any actual sender (or receiver) of the
transaction disappeared from the UTXO set, this would require the sender to use the new version of those
accounts that was created in the tx[outputs] of the approved transaction.

5.3 Proofs of security
5.3.1 Proof of anonymity

The full proof of anonymity of Quisquis is given in Appendix C, but we sketch the main intuition here. Infor-
mally, we claim that any A that can determine b from tx can be used to break either the indistinguishability
property of UPK, the hiding property of Commit, or the zero-knowledge property of the NIZK. That is, any
A that can determine b can distinguish between tx0 and tx1. Since tx0[inputs] = tx1[inputs] (by inspection),
it must be the case that the adversary either distinguishes between the transactions based on the proof π
or the set of accounts in outputs. The first option is ruled out due to the zero-knowledge property of π.
To see why the adversary cannot distinguish based on outputs, note that in both cases outputs is obtained
by updating all the accounts in inputs, and the only differences between outputs0 and outputs1 are (1) the
amounts by which the accounts have been increased or decreased and (2) which accounts are included in
P and which are included in A. Since the amounts are only present in committed form, we conclude that
the adversary cannot distinguish based on (1) due to the hiding property of the commitment. Since all the
accounts are updated (both those in P and in A), and they are then randomly permuted, the adversary
cannot distinguish based on (2) either.

5.3.2 Proof of theft prevention

To win the theft prevention game, the adversary needs to submit a transaction tx that increases the total
balance corresponding to the corrupted accounts or decreases the balance for the honest accounts. Intuitively,
this can happen only in two ways: (1) if the adversary manages to transfer value from an honest account (to
a corrupted account or to an “unspendable” account) and (2), if the adversary manages to transfer a value
higher than the balance of a corrupted account. Due to the extractability of the zero-knowledge proof system,
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we know that the tx will be accepted only if the adversary has a valid witness. This means that: in case (1)
we can use the adversary to compute a secret key sk for an honest account (thus breaking the unforgeability
property of UPK); in case (2) we can use the adversary to compute an opening of a commitment with a
balance different from the real one, thus breaking the binding property of the commitment scheme.

6 Instantiating the Zero-knowledge Proof
In this section we will instantiate the zero-knowledge proof that inputs and outputs satisfy the relation
described in the Trans algorithm. First consider the simplified case where Trans does not do any lexicographic
ordering or any type of permutation of the public keys. Then a prover essentially has to prove that (1)
accounts in outputs are proper updates of inputs, (2) the updates satisfy preservation of value, (3) balances
in the recipient accounts do not decrease, and (4) the sender account in outputs contain a balance in V.
Properties (3) and (4) require a tool called range proofs. We choose to use the most efficient implementation
of range proofs, which is the Bulletproofs of Bootle et al. [11]. The main requirement to use Bulletproofs is
to have a public commitment key (g, h) such that the DL relation between them is unknown.

We now explain how to check properties (1) and (2). Let inputs have balances ~bl, and outputs have
balances ~bl

′
. Let vi = bl′i − bli be the change in value from inputs to outputs. Additionally, let the sender be

inputs1 and the recipients be inputs2, . . . , inputst.
To be able to easily verify that the update is done correctly, the prover creates accounts ~acctδ that contain

values ~v. Since we need preservation of value, there needs to be a way to verify that
∑
i vi = 0. To do this,

recall that we can regard an account acct as two parts (pk, com) where pk is a UPK and com is a commitment
to the balance. The idea is then to use the homomorphic property of the commitment. This is done by first
creating ~acctε that also contains values ~v but where pkε,i = (g, h) for all i. (Hence comδ,i and comε,i can be
seen as two commitments of the same value under different public keys pkδ,i and pkε,i.) Then

∑
i vi = 0 iff∏

i comε,i is a commitment of 0 under public key (g, h). The values acctε,2, . . . , acctε,t will also be used to
prove that the recipient’s increase in values v2, . . . , vt are in V.

Note however that the simplified case does not hide where the sender and recipient accounts are in both
inputs and outputs. To get full anonymity, the input accounts are shuffled into a list inputs′ before the updates,
then shuffled again after the updates to get the output accounts in an arbitrary order. The first shuffle uses a
permutation so that the sender is always in position inputs′1 and the recipients are inputs′2, . . . , inputs

′
t, while

the second shuffle uses a random permutation. This will help making the proof more efficient (otherwise,
for every account in the transaction, we would have to prove the disjunction of the conditions for the sender
and the recipients).

6.1 The auxiliary functions
To realize the ideas above, we require some auxiliary functions defined as follows (see Table 1 for a summary).

CreateDelta({accti}ni=1, {vi}ni=1): Parse accti = (pki, comi). Sample r1, . . . , rn−1 $← Fp and set rn = −
∑n−1
i=1 ri.

Set acctδ,i = (pki,Commitpki(vi; ri)). Set acctε,i = (g, h,Commit(g,h)(vi; ri)). Output ({acctδ,i}ni=1, {acctε,i}ni=1),
~r).

VerifyDelta({acctδ,i}ni=1, {acctε,i}ni=1, ~v, ~r): Parse acctδ,i = (pki, comi) and acctε,i = (pk′i, com
′
i). If

∏n
i=1 com

′
i =

(1, 1) and for all i, comi = Commitpki(vi; ri) ∧ acctε,i = (g, h,Commit(g,h)(vi; ri)) output 1. Else output 0.

VerifyNonNegative(acct, v, r): If acct = (g, h, gr, gvhr) ∧ v ∈ V output 1. Else output 0.

UpdateDelta({accti}ni=1, {acctδ,i}ni=1): Parse accti = (pki, comi) and acctδ,i = (pk′i, com
′
i). If pki = pk′i for all

i output 2 {(pki, comi · com′i)}ni=1, else output ⊥.
2Note that if acct = (pk, com) and acctδ = (pk,Commitpk(v; r))), then UpdateDelta(acct, acctδ) = UpdateAcct(acct, v; 1, r).
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Function Description

CreateDelta Creates a set of accounts that contains the difference (say
vi) between balances in the input and output accounts, and
another set of accounts that also contains vi but all with
the global public key (g, h).

VerifyDelta Verifies that accounts created using CreateDelta are consis-
tent.

VerifyNonNegative Verifies that an account contains a balances in V.
UpdateDelta Updates the input accounts by vi, but with left half un-

changed.
VerifyUD Verifies that UpdateDelta was performed correctly.

Table 1: Additional functions to perform a transaction.

VerifyUD(acct, acct′, acctδ): Parse acct = (pk, com), acct′ = (pk′, com′) and acctδ = (pkδ, comδ). Check that
pk = pk′ = pkδ ∧ com′ = com · comδ.

6.2 The proof system
Let (g, h) be a global public key output by the Setup algorithm, such that the DL relation between them is
unknown. The NIZK system NIZK.Prove(x,w) performs the following:

1. Parse x = (inputs, outputs), w = (sk, bl, ~v, (~u1, ~u2), ψ : [n]→ [n], s∗,R∗, A∗). If R(x,w) = 0 abort;

2. Let ψ1 be a permutation such that ψ1(s∗) = 1, ψ1(R∗) = [2, t] and ψ1(A∗) = [t+ 1, n];

3. Sample ~τ1 $← Fnp , ρ1 $← Fp;

4. Set inputs′ = UpdateAcct({inputsψ1(i), 0}i; (~τ1, ρ1));

5. Set the vector ~v′ such that v′i = vψ1(i);

6. Set ({acctδ,i}, {acctε,i}, ~r) $← CreateDelta(inputs′, ~v′);

7. Update outputs′ ← UpdateDelta(inputs′, {acctδ,i});

8. Let ψ2 = ψ−11 ◦ ψ, τ2,i =
u1,i

τ1,ψ2(i)
and ρ2 =

u2,i−ρ1
τ1,ψ2(i)

− rψ2(i); (So that ψ1 ◦ ψ2 = ψ and outputs =

UpdateAcct({outputs′ψ2(i)
, 0}i; ~τ2, ρ2)}).

9. Generate a ZK proof π = (inputs′, outputs′, acctδ, acctε, π1, π2, π3) for the relation R1 ∧ R2 ∧ R3, where

R1 = {(inputs, inputs′, (ψ1, ~τ1, ρ1)) |
VerifyUpdateAcct({inputs′i, inputsψ1(i), 0}i;~τ1, ρ1) = 1},

R2 = {((inputs′, outputs′, acctδ, acctε), (sk, bls∗ , ~v′, ~r)) |
VerifyUD(inputs′i, outputs

′
i, acctδ,i) = 1 ∀i

∧ VerifyUpdateAcct(inputs′i, outputs
′
i, 0; 1, ri) = 1 ∀i ∈ [t+ 1, n]

∧ VerifyNonNegative(acctε,i, v
′
i, ri) = 1 ∀i ∈ [2, t]

∧ VerifyAcct(outputs′1, (sk, bls∗ + v′1)) = 1

∧ VerifyDelta({acctδ,i}, {acctε,i}, ~v′, ~r) = 1},
R3 = {(outputs′, outputs, (ψ2, ~τ2, ρ2)) |

VerifyUpdateAcct({outputsi, outputs′ψ2(i)
, 0}i; ~τ2, ρ2) = 1}.
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6.2.1 Instantiating the shuffle argument

The zero-knowledge argument of knowledge for R1 and R3 uses a shuffle argument Σ1 = Σsh(ψ1), which is
required to prove that inputs′ is a correct shuffle of inputs and Σ3 = Σsh(ψ2), which is required to prove that
outputs is a correct shuffle of outputs′.

Let (g, h) be the global public key output by the Setup algorithm, and let ck = (ḡ, ḡ1, . . . , ḡn) be the
commitment key of the extended Pedersen commitment scheme XComck(~a; r) = ḡr

∏
i ḡ
ai
i . In the following,

we just write this as XCom(~a; r).
Recall that an update of accti = (pki, comi) using randomness (τi, ρi) is acct′j = (pk′j , com

′
j) = (pkτii , comi·

pkρii ). The public key pki is updated by just exponentiation, so its proof of correct shuffle is a slight
modification of the Bayer-Groth [5] shuffle. For this we define the generalized commitments to a matrix
A = (~a1, . . . ,~an) ∈ Fm×np to be the commitments of its n columns. That is, XCom(A;~r) = (XCom(~a1; r1),
. . . ,XCom(~an; rn)). Additionally, a Hadamard product of matrices A and B, denoted C = A ◦ B, is simply
the matrix such that cij = aijbij .

The shuffle argument uses the following sub-arguments [5]:

• The multi-exponentiation argument, πMExp: Given a vector ~C ′ and a commitment ~C ′B , the prover shows
knowledge of a witness w = (~b′, ~r) such that ~C ′B = XCom(~b′;~r), and for a fixed T ∈ G, it holds that∏n
i=1 C

′
i
b′i = T . In the shuffle argument, T =

∏n
i=1 C

xi

i , where x is the second message of the protocol.

• The product argument, πprod: Given a commitment ~CA, the prover shows knowledge of a witness w = (~a,~r)

such that ~CA = XCom(~a;~r), and for a fixed t ∈ Fp, it holds that
∏n
i=1 ai = t. In the shuffle argument,

t =
∏n
i=1(y · i+ xi − z), where (y, z) is the fourth message of the protocol.

• The Hadamard product argument, πHad: Given extended Pedersen commitments ~A, ~B, ~C, the prover
shows knowledge of an opening to vectors ~a,~b,~c such that ~a ◦~b = ~c.

A proof of correct shuffle for comi uses the following invariant, provided we set all ρi to be the same
value ρ. Let pki = (gi, hi), (G,H) = (

∏N
i=1 g

Xi

i ,
∏N
i=1, h

Xi

i ) and (G′, H ′) = (Gρ, Hρ). For a random variable
X,

∏N
i=1(com′ψ(i))

Xψ(i)

=
∏N
i=1 com

Xi

i · (G′, H ′). Hence we can also use a multi-exponentiation argument

(this time with T =
∏n
i=1 com

xi

i · (G′, H ′)), with an additional proof of correct update Σvu for the tuple
(G,H,G′, H ′).

Note that using the same ρi = ρ to update the comi is secure under the indistinguishability of UPK and
computational hiding of Commit. (An adversary that can distinguish if two accounts are updated using the
same ρ, can be used to break DDH.)

The full shuffle argument Σsh is shown in Figure 1.
The following lemma is similar to the one in [5], and the full proof is deferred to Appendix A.

Lemma 2. Let the product argument πprod, the Hadamard product argument πHad, the verify update argu-
ment πvu and the multi-exponentiation argument πMExp be public-coin SHVZK arguments of knowledge.
Then Σsh is a public-coin SHVZK argument of knowledge of (ψ,~τ , ρ) such that (pk′i, com

′
i) = (pkτiψ(i),

comψ(i) · pkρψ(i)).

6.2.2 Instantiating the other sub-arguments

To prove statements related to the function VerifyNonNegative we use Bulletproofs, which we denote by
the argument Σrange(acct, v, r). VerifyAcct also uses Bulletproofs but since the sender may not know the
randomness used to open his commitment (for example, if the account was previously updated by someone
else), we need a separate argument Σrange,sk(acct, v, sk). This argument first creates acctε, proves knowledge
of (v, r) such that acctε = (g, h,Commit(g,h)(v; r)), then calls Σrange(acctε, v, r).

The zero-knowledge argument of knowledge Σ2 for the non-shuffle parts consists of the following sub-
protocols:
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Σsh : a proof of shuffle of accounts ~acct into ~acct
′

Prover (ψ, ~τ , ρ) Verifier
Parse accti = (pki, comi) Parse accti = (pki, comi)

~r, ~r′, ~s, ~s′ $← Fmp Parse acct′i = (pk′i, com
′
i)

~a← {ψ(i)}Ni=1

~CA ← XCom(~a;~r)

~Cτ ← XCom(~τ ;~r′)
~CA, ~Cτ

x x $← Fp

~b← {xψ(i)}Ni=1

~b′ ← {xψ(i)/τi}Ni=1

~CB ← XCom(~b;~s)

~C′B ← XCom(~b′;~s′)

~CB , ~C′B , πHad V (πHad): ~b′ ◦ ~τ
?
= ~b

y, z y, z $← Fp

~f ← y~a+~b ~CF ← ~CA
y ~CB

~t← y~r + ~s ~C−z ← XCom((−z, . . . ,−z); 0)

~z ← (z, . . . , z) ~CE ← ~CF · ~C−z

~e← (f1 − z, . . . , fn − z)

(G,H)←
N∏
i=1

pkx
i

i (G,H)←
N∏
i=1

pkx
i

i

(G′, H ′)←
N∏
i=1

pkx
iρ
i

πprod, πvu,

πMExp1, πMExp2
V (πprod):

N∏
i=1

ei
?
=

N∏
i=1

(y · i+ xi − z)

~CE ← XCom(~e;~t) V (πvu): (G,H,G′, H ′) is a DDH tuple

V (πMExp1):
N∏
i=1

pk′i
b′i ?

=

N∏
i=1

pkx
i

i

V (πMExp2):
N∏
i=1

com′i
bi ?

=

N∏
i=1

comxi

i · (G′, H ′)

Figure 1: The full shuffle argument Σsh. Here V (π) : x means that statement x should be verified using the
argument π.
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1. Σvud: trivial check of VerifyUD.

2. ΣCom: prover shows knowledge of ~v′, ~r such that VerifyDelta({acctδ,i}), {acctε,i}, ~v′, ~r) = 1.

3. Σizero: prover shows knowledge of ri such that VerifyUpdateAcct(inputs′i, outputs′i, 0, (1, ri)) = 1.

4. ΣNN : (
∧t+1
i=2 Σrange(acctδ,i, v

′
i, ri)) ∧ (

∧n
i=t+2 Σizero) .

Hence Σ2 = Σvud ∧ΣCom ∧ΣNN ∧Σrange,sk(outputs′1, bls∗ + v′1, sk). The proof of the next lemma follows
from the properties of AND-proofs, and is thus omitted.

Lemma 3. Σ2 is a public-coin SHVZK argument of knowledge of the relation R2.

The full SHVZK argument of knowledge for Quisquis is then Σ := Σ1∧Σ2∧Σ3. The proof of the following
theorem is deferred to Appendix E.

Theorem 1. Σ is a public-coin SHVZK argument of knowledge of the relation R(x,w) defined in Section 5.2.

7 Performance
We now describe a prototype implementation of Quisquis, written in roughly 2000 lines of Go and interfaced
with an existing Rust implementation for producing Bulletproofs,3 to demonstrate that it is competitive in
terms of both communication and computational costs.

As a reminder, transactions in Quisquis are made up of: (1) input and output account lists tx[inputs]
and tx[outputs], (2) intermediate account lists inputs′, outputs′, {acctδ,i} and {acctε,i}, and (3) a NIZK
Σ = Σ1 ∧Σ2 ∧Σ3, with Σ1 proving that a permutation has updated each of the accounts in tx[inputs] to the
corresponding intermediate account, and Σ3 similarly proving that tx[outputs] is an updated permutation of
the set of intermediate accounts. Σ2 is a combination of multiple NIZKs to prove that a number of conditions
on the accounts and their balances are satisfied.

In our UPK construction, an account consists of four elements from G. Using an elliptic curve at the 128-
bit security level and with compressed points (i.e., in which points are represented just by the x-coordinate
and the sign of the y-coordinate), each group element requires 33 bytes of communication (32 bytes for the
x-coordinate and 1 bit for the sign), and each field element is 32 bytes.

The lists of accounts dominate the proof size for large anonymity set sizes. Since (1) and (2) are both
lists of accounts of size n, and each account consists of 4 group elements, each transaction contains 24n
group elements, or 792n bytes.

For Σ1 and Σ3, the Bayer-Groth shuffle that we use in Section 6 is parameterizable, and we have chosen
the options that minimize communication. We thus implement the shuffle with communication complexity
that grows proportionally to the square root of the size of the anonymity set. This means that it consists of
11
√
n + 7 group elements and 5

√
n + 12 field elements. Concretely then, each of these two proofs requires

352
√
n+ 224 bytes for group elements, and 160

√
n+ 384 for field elements, for a total of 512

√
n+ 608 bytes

each, giving 1024
√
n+ 1216 bytes in total.

Bulletproofs can be produced and verified in batches, leading to the resulting proofs growing only loga-
rithmically with the size of the batch, rather than linearly. These proofs are then most efficient when batched
in powers of two, and so we have chosen the anonymity set size to be both square and a power of two below.
However, anonymity set sizes are not limited to these values. The proof size when using Bulletproofs for
range proofs also grows depending on the size of the range, and this also must be a power of two. We have
chosen K = 64 for V = [0, 2K − 1].

Besides the 16n group elements used for lists of intermediate accounts, Σ2 requires 6n + 38 + 2 log2(t)
group elements, and 6n + 15 field elements. The total proof size is then 6n + 22

√
n + 52 + 2 log2(t) group

elements and 6n+ 10
√
n+ 39 field elements.

3https://github.com/dalek-cryptography/bulletproofs
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|A| Gen. (ms) Verif. (ms) Proof size Proof size (bytes)

4 124±4% 25.6±3% 122G + 83Fp 6528
16 471±4% 71.6±3% 244G + 175Fp 13,408
64 2110±3% 251 ±4% 624G + 503Fp 36,064

Table 2: The computation and communication complexity of the NIZKs in Quisquis, reported with various
anonymity set sizes, and averaged over 20 seconds of runs.

Security Efficiency

Anon. Deniability Theft UTXO growth tx size tx cost (ms)

prev. big-O kB prover verifier

Tumblers yes* no yes* non-monotonic low - high slow
Zcash yes no* yes monotonic 1 0.29 21,747 8.57
Monero no yes yes monotonic n+ log(v) 2.71 982 46.3
Quisquis yes yes yes non-monotonic n+ log(v) 13.4 471 71.6

Table 3: The security properties and efficiency considerations for each privacy solution. For tumblers, the
stated properties are for the best solutions, but they vary significantly among solutions. No tumblers satisfy
plausible deniability, and all have relatively high transaction cost due to the required latency. Numbers
are given for Monero with 2 newly created TXOs and a ring size 10, and Quisquis numbers are given for
one sender, 3 receivers and 12 randomly selected accounts (giving a total size of 16). n is the number of
participants in the transaction, and v is the bit-length of the largest value allowed in the system.

Concretely, Table 2 shows the time to generate and verify the NIZK arguments in Quisquis with certain
anonymity set sizes. These benchmarks were collected on a laptop with an Intel Core i7 2.8GHz CPU and
16GB of RAM, and demonstrate the overall practicality of Quisquis: proofs take 2.1 seconds to generate
and comprise 36 kB in the worst case in which the size of the anonymity set is 64. We stress, however, that
we do not expect users to end up using anonymity sets of anywhere near this size in a practical deployment
of Quisquis, although we leave it as an interesting open problem to understand the effect different set sizes
would have on the level of anonymity achieved by users.

8 Related Work and Comparisons
We provide a broad overview of related work, in terms of tumblers designed to provide anonymity, as well
as a detailed comparison with the two solutions, Zcash and Monero, that are most related to our own. The
results of our comparison are summarized in Table 3. The benchmarks in Table 3 were collected using a
server with an Intel Core i7 3.5GHz CPU and 32GB of RAM, due to the Zcash client performing best when
used with Linux, and due to the high RAM requirements of its prover. Both the prover and verifier in
Quisquis and Monero are CPU rather than RAM bound, and so the additional RAM did not considerably
change the proving and verification time, although optimizations may be possible.

There are several approaches that do not fit into the categories below, which we discuss now. First, Mim-
blewimble [32, 15] is a cryptocurrency design that compresses the state of the blockchain via “cut-through”
transactions; it thus achieves a goal similar to ours in providing a compact UTXO set. It also achieves a
notion of privacy known as transaction indistinguishability [15], but it does not provide anonymity in the
face of network-level attackers (who can still identify the senders and recipients in individual transactions).
In this sense, Mimblewimble achieves anonymity only against “late-comer” attackers who see the data after
it is published in the blockchain, so do not see individual transactions as they move around the network. In
Quisquis the attacker is assumed to be able to see all individual transactions, so we can achieve anonymity
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even against attackers seeing all transactions at the network level. We view this as quite realistic given the
high number of full nodes in existing cryptocurrencies. Further, the techniques used in Mimblewimble are in
some sense complementary to Quisquis: if individual Quisquis transactions were able to be combined using
the same techniques as Mimblewimble (meaning one block would contain a single “super-transaction” com-
bining the inputs and outputs of all the individual transactions), then against the same late-comer adversary
you could argue that the anonymity set would be bigger.

Second, after posting our paper online, we were made aware of Appecoin [21], a proposal for an anonymous
e-cash system. While there are some similarities in the design of this system compared to ours, including
the use of shuffles and updatable public keys, the presentation of Appecoin is very informal, which in turn
makes it difficult to identify the extent to which it satisfies our desired security properties.

8.1 Tumblers
Solutions for tumblers are often split into two categories: centralized [8, 38, 16] and decentralized [23, 36, 7,
24, 35]. In terms of the former, the one that achieves the best security is arguably TumbleBit [16], which
achieves anonymity and theft prevention assuming RSA and ECDSA are secure. The most naïve centralized
solutions do not even achieve theft prevention (as a centralized mix can simply steal your coins rather than
permute them), and none achieve plausible deniability. The mixing process is typically quite slow, either
because participants must wait for others to join, or because multiple rounds of interaction with the tumbler
are required.

In terms of decentralized solutions, the most common is Coinjoin [23], which has also given rise to the
Dash cryptocurrency [1] and the coin mixing protocol ValueShuffle [35]. All of these solutions satisfy theft
prevention, but none satisfy plausible deniability. The arguments for anonymity are not typically based on
any cryptographic assumptions, and in some cases the protocols are not fully anonymous; e.g., ValueShuffle
hides payment values but reveals which transaction outputs are unspent. One exception is Möbius [24], in
which security is proven under the DDH assumption (in the random oracle model). Again, latency is often
quite high due to the need to wait for others to join the mixing process, and for all participants to exchange
messages.

8.2 Zcash
Zcash [6] is based on succinct zero-knowledge proofs (zk-SNARKs), which allow users to prove that a transac-
tion is spending unspent shielded coins (i.e., coins that have already been deposited into a so-called shielded
pool), without revealing which shielded coins they are. In terms of security, the anonymity set in Zcash is
defined as all other coins that have been deposited into the pool. It also achieves theft prevention due to the
soundness of the zero-knowledge proofs, but does not achieve plausible deniability, as all users opt in to the
anonymity set by depositing their coins, and their transactions are performed independently of one another.

In terms of efficiency, since it is not known which shielded coins are being spent, no shielded coins can
ever be removed from the UTXO set. The protocol mitigates this growth by storing information about
shielded coins in a Merkle tree, meaning proofs grow in a logarithmic rather than a linear fashion with
respect to the size of the UTXO set, but the growth of the set is still monotonic. It is relatively slow
to generate Zcash transactions (https://speed.z.cash/), and they also require a large amount of RAM,
although these numbers are expected to improve significantly in future releases [2].

Finally, in terms of cryptographic assumptions, despite recent advances [9], Zcash still requires a “trusted
setup” to generate the common reference string used for the zk-SNARKs; otherwise, anyone with knowledge of
its trapdoor can violate soundness and spend shielded coins that they do not rightfully own. Such structured
reference strings are qualitatively different from a common random string (such as the one used in Quisquis),
which can be generated using a random oracle, and instead require performing relatively cumbersome MPC-
based “ceremonies”. Additionally, all zk-SNARKs rely on strong (i.e., non-falsifiable and relatively untested)
“knowledge-of-exponent”-type assumptions.
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8.3 Monero
In Monero [31], senders form transactions by picking other unspent transaction outputs (“mix-ins”) and
forming a ring signature over them. Pairs of senders and recipients also strengthen the anonymity of this
approach by using freshly generated stealth addresses every time they transact, meaning every address is
used to receive coins only once. In terms of security, Monero satisfies both theft prevention (due to the
unforgeability of the ring signature) and plausible deniability. For anonymity, however, it is known that
selecting mix-ins uniformly at random can be used to distinguish the real input from the fake ones [27].
This not only means that a more complex algorithm is needed to generate the anonymity set inside the
protocol but also that it is incompatible with our definition of anonymity, in which oracle queries may result
in the selection of uniformly random UTXOs. Thus, while we do not rule out the option that Monero could
be proved anonymous in a different model, the same anonymity set size does provide more anonymity in
Quisquis (in which all keys appear only once) than in Monero (in which keys may be used and re-used in
ways that leak information).

To illustrate the main conceptual difference between Monero and Quisquis, consider the following toy
example of an intersection-style attack [27, 20]. Using a system in which accounts cannot be removed from
the UTXO set, such as Monero, acct1 transfers all its funds to acct4 and uses acct2 as its anonymity set.
Then acct2 transfers its funds to acct5 using acct1 as its anonymity set, and acct3 transfers its funds to
acct6 using acct2 as its anonymity set. As double-spending is not possible, anyone observing the blockchain
can see that both acct1 and acct2 have already spent their contents at the time the last transaction was
performed, so acct3 must be the actual sender. Using Quisquis instead, all the accounts used as inputs would
have been removed from the UTXO set and replaced by new random-looking accounts, meaning it would
not be possible to use the same account twice in two different anonymity sets. Thus, such an attack could
not be mounted. Furthermore, altruistic users in Quisquis could periodically send themselves money using
large anonymity sets in order to “refresh” the UTXO set, in an attempt to ensure that the UTXO set has a
relatively uniform distribution in terms of the age of the accounts (i.e., the time at which they were created)
and thus evade attacks on Monero that are based on the differences in this distribution [27]. Again, such
solutions do not work in Monero, as accounts always stay in the UTXO set.

With respect to efficiency, the UTXO set also grows monotonically, as it does in Zcash. Finally, in terms
of assumptions, Monero makes the same ones as Quisquis: it requires DDH to be secure in the random oracle
model.

9 Conclusions and Open Problems
In this paper we have identified and solved an open problem in anonymous cryptocurrencies; namely, that
of a monotonically increasing UTXO set. We have introduced Quisquis, complete with an updatable public
key system and accompanying NIZKs with low communication and computational complexity. Quisquis
allows users to achieve strong notions of anonymity and theft prevention, which we have presented with
accompanying reductions to the DDH and DL assumptions. As the anonymity properties are achieved
by each individual user’s actions, transactions can be made anonymously without increased latency, and
without strictly increasing the size of the UTXO set. While our NIZKs are already relatively efficient,
we nevertheless leave as an interesting open problem the design of a special-purpose NIZK for improved
communication efficiency.
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A Proof of Lemma 2

Proof. Perfect completeness. For an honest prover, fi = yψ(i) + xψ(i), ~CE = XCom(~f − ~z; t), bi = xψ(i),
b′i = xψ(i)/τi, (G,H) =

∏N
i=1 pk

xi

i , (G′, H ′) = (G,H)ρ and (pk′i, com
′
i) = (pkτiψ(i), comψ(i) · pkρψ(i)). So we

have that (G,H,G′, H ′) is a DDH tuple,
n∏
i=1

ei =

n∏
i=1

(fi − z)

=

n∏
i=1

(yψ(i) + xψ(i) − z)

=

n∏
i=1

(yi+ xi − z),

n∏
i=1

pk′i
b′i =

n∏
i=1

pk′i
xψ(i)/τi

=

n∏
i=1

(pkτiψ(i))
xψ(i)/τi

=

n∏
i=1

pkx
i

i , and
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n∏
i=1

com′i
bi =

n∏
i=1

(comψ(i) · pkρψ(i))
xψ(i)

=

n∏
i=1

comxi

i · (
n∏
i=1

pkx
i

i )ρ

=

n∏
i=1

comxi

i · (G′, H ′),

as desired.
Perfect SHVZK. Since the sub-arguments are perfect SHVZK and the commitment scheme XCom is
perfectly hiding, Σsh is also perfect SHVZK. A simulator can simulate the argument by having ~CA, ~CB , ~C ′B be
random commitments to the zero vector and ~Cτ be a random commitment to (1, 1, . . . , 1), then it additionally
invokes the perfect SHVZK simulators for the sub-arguments.
Argument of knowledge. This proof is almost identical to that of Bayer and Groth [5], where the knowl-
edge extractor invokes the knowledge extractor for the product, Hadamard product and multi-exponentiation
arguments to get the prover’s witness w = (ψ,~τ , ~ρ).

Define f(X,Y, Z) :=
∏n
i=1(di−Z)−

∏n
i=1(Y i+Xi−Z). Then since the verifier accepts Σsh, f(x, y, z) = 0.

By the Schwartz-Zippel lemma, however, with all but negligible probability this implies f(X,Y, Z) = 0, so
there exists a permutation ψ such that for all i, yai+bi = di = yψ(i)+xψ(i). Again using the Schwartz-Zippel
lemma, this implies ai = ψ(i) and bi = xψ(i).

Since the verifier accepts πHad, the knowledge extractor for the Hadamard product outputs~b′, ~τ such that
~b′◦~τ = ~b. The permutation ψ and randomness ~ρ used to shuffle {pki} can then be extracted by rewinding and
extracting n witnesses to the multi-exponentiation argument πMExp1. Similarly, the permutation ψ′ used to
shuffle {comi} can be extracted by rewinding and extracting n witnesses to the second multi-exponentiation
argument πMExp2. If ψ 6= ψ′ we abort, else we have extracted a valid witness.

B NIZK arguments for Trans

In this section, we explain in detail how to do the following sub-arguments, mentioned in Section 6:

1. Σivu : prover shows knowledge of w such that pk′i = pkwi .

2. ΣCom: prover shows knowledge of ~v, ~r such that VerifyDelta( ~acct1, ~acct2, ~v, ~r) = 1.

3. Σizero: prover shows knowledge of ri such that VerifyUpdateAcct(acct1, acct2, 0, (1, r)) = 1.

4. Σrange,sk: prover shows knowledge of v and sk such that acct contains value v ∈ V and uses secret key sk.

B.1 Implementing Σi
vu

Σivu is as follows.
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ΣiCom: a proof of knowledge of same committed value

Prover(acct1,i = (g1, h1, c1, d1), Verifier(acct1,i, acct2,i)
acct2,i = (g2, h2, c2, d2), (v, r1, r2))

v′, r′1, r
′
2

$← Fp

(e1, f1)← (g
r′1
1 , g

v′h
r′1
1 )

(e2, f2)← (g
r′2
2 , g

v′h
r′2
2 ) e1, f1, e2, f2

x x $← {0, 1}κ

(zv, zr1, zr2)← x(v, r1, r2) + (v′, r′1, r
′
2)

(zv, zr1, zr2) Check for i = 1, 2:

gzrii

?
= cxi · ei

gzvhzrii
?
= dxi · fi

Σivu: a proof of valid update

Prover(pki, pk
′
i, w) Verifier(pki, pk

′
i)

s $← Fp

a← pksi = (gsi , h
s
i )

a

c c $← {0, 1}κ

z ← cw + s z Check pkzi
?
= (pk′i)

c · a

B.2 Implementing ΣCom

Let ΣiCom(acct1,i, acct2,i; (v, r1, r2)) be a proof of knowledge of two commitments of the same value v under
different public keys. That is, a prover shows knowledge of w = (v, r1, r2) such that com1,i = Commitpk1(v; r1)
and com2,i = Commitpk2(v; r2).

Using ΣiCom, ΣCom can be realized by
∧n
i=1 ΣiCom(acct1,i, acct2,i; (vi, ri, ri))

4, but the verifier additionally
checks that pk2,i = (g, h) for all i and that

∏n
i=1 com2,i = (1, 1).

B.3 Implementing Σi
zero

The sub-argument can be written as follows: given acct1 = (pk, com1), acct2 = (pk, com2), the prover knows
r such that com2 = com1 · pkr. The equation is equivalent to VerifyUpdate(pk, com2

com1
, r) = 1, hence can be

done using Σvu.

B.4 Implementing Σrange,sk

The sub-argument can be written as follows: given acctS = (g1, h1, c1, d1), acctε = (g, h, c2, d2), the prover
knows (v, sk, r) such that h1 = gsk1 ∧ d1 = gvcsk1 ∧ (c2, d2) = (gr, gvhr) ∧ v ∈ V. The last condition is just

4In the protocol, we commit to the same value using the same randomness.
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ΣCom,sk: a proof of knowledge of secret key and same committed value

Prover(acctS = (g1, h1, c1, d1), Verifier(acctS , acctε)
acctε = (g, h, c2, d2), (v, sk, r))

rv, rsk, r
′ $← Fp

(e1, f1)← (g
rsk
1 , grvc

rsk
1 )

(e2, f2)← (gr
′
, grvhr

′
) e1, f1, e2, f2

x x $← {0, 1}κ

(zv, zsk, zr)← x(v, sk, r) + (rv, rsk, r
′) (zv, zsk, zr) Check:

g
zsk
1

?
= hx1 · e1

gzvc
zsk
1

?
= dx1 · f1

gzr
?
= cx2 · e2

gzvhzr
?
= dx2 · f2

Σrange(acctε, v, r) (i.e., a standard Bulletproof on acctε). The first three conditions can be proven using
ΣCom,sk (see diagram).

C Full proof of Quisquis satisfying anonymity
Before we give a give a full proof of Quisquis satisfying anonymity, we first recall a definition for unbounded
NIZK and weak simulation-extractable NIZK in the random oracle model, based on [13].

Definition 6 (Unbounded NIZK). Let L be an NP language, and let H be the hash function modeled as a
random oracle RO. Then (PH ,VH) is an unbounded NIZK proof for language L if for all PPT adversary
A, there exists a simulator S(·) (that outputs a valid proof given input x ∈ L, ⊥ otherwise) such that

|Pr[AH(·),P(·)(1κ) = 1]− Pr[ARO(·),S(·)(1κ) = 1]| ≤ negl(κ).

Definition 7 (Weak simulation-extractable zero-knowledge). Informally, even if an adversary A has seen
q = poly(κ) simulated proofs, whenever A makes a fresh accepting proof, one can use this to extract a witness.

It is proven in [13] that NIZK created from SHVZK arguments using the Fiat-Shamir transform are
unbounded and weak simulation-extractable.

Next we provide generalized definitions of indistinguishability of accounts, and prove that they hold when
constructing acct from UPK and Commit.

We first prove a useful property of our accounts, resulting from the combination of UPK and Commit:
a) the value in an account stays hidden and b) that the input/output of an “update account” procedure are
unlinkable.

Definition 8 (Indistinguishability of accounts and value). Consider the following experiment for every
v∗, v0, v1 ∈ V:

1. (acct∗, sk∗) $← GenAcct(1κ, v∗);

2. acct0 $← UpdateAcct(acct∗, v0);
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3. (acct1, sk1) $← GenAcct(1κ, v1).

Then for every PPT adversary A,

|Pr[A(acct∗, acct0) = 1]− Pr[A(acct∗, acct1) = 1]| ≤ negl(κ).

Lemma 4. Accounts built from UPK and Commit satisfy Definition 8.

Proof. The proof follows easily from the properties of UPK and Commit. Recall that if acct∗ = (pk∗, com∗)
then acct0 = (pk0, com0) with pk0 = Update(pk∗; r) and com0 = com∗ � Commitpk∗(v0; r0). It follows from
the homomorphic property of the commitment scheme that com0 above is distributed identically to com′0 =
Commitpk∗(v

∗ + v0; r∗ + r0)). This is indistinguishable from com′ = Commitpk∗(v1; r′) due to the hiding
property of the commitment, which is in turn indistinguishable from com1 = Commitpk1(v1; r1) due to the
key-hiding property of the commitment. Thus (pk0, com0) is indistinguishable from (pk0, com1), which is in
turn indistinguishable from (pk1, com1) due to the indistinguishability of the UPK system.

We now prove that Quisquis using our construction of accounts satisfies anonymity.

Theorem 2. Assume acct is an updatable account system that satisfies indistinguishability (Definition 8).
Then Quisquis satisfies anonymity.

Proof. We first introduce the concept of predecessors and futures of an account acct in Quisquis. Given
two accounts acct, acct′ we say that acct is the direct predecessor of acct′ (equivalently, acct′ is the direct
successor of acct) if acct′ $← UpdateAcct(acct, v) (this happens as part of a transact query in Definition 4).
Then, we recursively define the set P (acct′) of all predecessors of acct′ to be P (acct′) = acct ∪ P (acct).
Similarly, we define the set F (acct) of all successors of acct to be F (acct) = acct′ ∪ F (acct′). We also define
P i(·) to be the i-th predecessor function (hence P 1(acct) is the direct predecessor of acct). We also define
Pb = {acctib , acctjb} for b ∈ {0, 1}.

We prove the theorem using a sequence of hybrid games, as follows.
Hybrid 0. The anonymity game for b = 0.
Hybrid 1. Same as Hybrid 0, but here the NIZK extractor (guaranteed by Definition 7) is run on each
transaction generated by the adversary. That is, if the adversary queries (Verify, tx) to the oracle, the oracle
runs Verify(state, tx). If it returns state′ 6= ⊥, the oracle updates state′ ← state and additionally uses the
NIZK extractor to extract the witness used to generate tx, including sk. This hybrid is well-defined, since
NIZKs created from SHVZK arguments using the Fiat-Shamir transform are simulation-extractable [13].
Since we have weak simulation-extractable zero-knowledge, this extraction outputs a valid witness.
Hybrid 2. Same as Hybrid 1, here replacing the zero-knowledge arguments with the output of the corre-
sponding simulator of the zero-knowledge property (guaranteed by Definition 6). That is, if the adversary
queries (transact,P, A,~v), the oracle runs tx $← Trans((sk, bl),P, A,~v), but replaces the zero-knowledge
arguments in tx with a simulated argument. Similarly, use the simulator when producing the proof for the
challenge transaction tx0.
Hybrid 3. Same as Hybrid 2, but now we replace accti0 , accti1 , acctj0 , and acctj1 with fresh outputs of
GenAcct. Formally, this is a sequence of four hybrids where, for each i∗ ∈ {i0, i1, j0, j1} we do the following
change: if i∗ ∈ [m], Hybrid 3 is identical to Hybrid 2 (the first [m] accounts are generated from GenAcct
as output of Setup). Else, behave as in Hybrid 2 with the exception that, when the adversary queries
(transact,P, A,~v), such that the account (i∗, accti∗ , ski∗ , vi∗) is created in the memory of the challenger,
run tx $← Trans((sk, bl),P, A,~v), (acct′, sk′) ← GenAcct(1κ, vi∗) and then return tx′, where tx′ = tx except
that accti∗ is replaced in outputs with acct′. (As before, tx′.π is a simulated argument).
Hybrid 4. Hybrid 4 is the same as Hybrid 3, but here we replace the successors of i0, i1, j0, j1 in the outputs
of the challenge transaction with fresh outputs of GenAcct. Let {i′0, i′1, j′0, j′1} be the indices of the successors
of {i0, i1, j0, j1} in tx[outputs], i.e., i′0 = F 1(i0) (and so on). Formally, this is a sequence of four hybrids where,
for each i∗ ∈ {i′0, i′1, j′0, j′1} we do the following change: behave as in Hybrid 3 with the exception that, when
the adversary queries (challenge, i0, i1, j0, j1, A, v0, v1), such that the account (i∗, accti∗ , ski∗ , vi∗) is created
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in the memory of the challenger, run tx0 $← Trans((sk0, bl0),P0, A0, v0), (acct′, sk′) ← GenAcct(1κ, vi∗) and
then return tx′, where tx′ = tx0 except that accti∗ is replaced in outputs with acct′. (As before, tx′.π is a
simulated argument therefore, in fact, the hybrid never needs to use sk0). Note that after this hybrid, all
accounts corresponding to the challenge identities in both inputs and outputs are fresh outputs of GenAcct,
where the accounts in outputs have been generated with the balance corresponding to the case b = 0.
Hybrid 5. This is essentially Hybrid 4 but with b = 1 i.e., replace the step tx0 $← Trans((sk0, bl0),P0, A0, v0)
with tx1 $← Trans((sk1, bl1),P1, A1, v1).
Hybrid 6. Same as Hybrid 5, but with b = 1 i.e., replace the successors of the challenge accounts in
tx[outputs] with the updates of the challenge accounts. This is essentially Hybrid 3 with b = 1.
Hybrid 7. Same as Hybrid 6, but here each of the challenge accounts i∗ ∈ {i0, i1, j0, j1} is created as in the
real game (that is, the accounts might be output of the UpdateAcct function). This is essentially Hybrid 2
with b = 1.
Hybrid 8. Same as Hybrid 7, however replacing the simulated arguments with real zero-knowledge argu-
ments. This is essentially now Hybrid 1 with b = 1.
Hybrid 9. Same as Hybrid 8, but without running the extractor on the transactions generated by the
adversary. This is then the anonymity game for b = 1.

We prove the theorem by showing that an adversary has negligible advantage of distinguishing Hybrid 0
and Hybrid 9, using a sequence of lemmas.

Lemma 5. Hybrid 0 and Hybrid 1 are indistinguishable.

Corollary 1. Hybrid 8 and Hybrid 9 are indistinguishable.

Proof. The adversary’s view in the two games are identical as per Definition 7.

Lemma 6. Hybrid 1 and Hybrid 2 are indistinguishable.

Corollary 2. Hybrid 7 and Hybrid 8 are indistinguishable.

Proof. Let A1,2 be an adversary that can distinguish Hybrid 1 and Hybrid 2 with advantage ε1,2. We
construct an adversary A′ that breaks the unbounded zero-knowledge property of the proof segment π of a
transaction tx with probability εuzk.
A′ gets as input a zero-knowledge oracle Ozk(·) that, given a statement x = (tx[inputs], tx[outputs]),

provides a valid zero-knowledge proof for the transaction. Recall that A′ needs to determine if Ozk(·) was a
prover oracle or a simulator oracle.
A′ creates the hybrid game h as follows.

1. A′ generates state $← Setup(1κ, ~v);

2. A′ implements the oracle O(·) with the following change: on a query (transact,P, A,~v), A′ runs tx $←
Trans((sk, bl),P, A,~v), where the proof in tx is obtained from querying Ozk(tx[inputs], tx[outputs]);

3. A′ runs (i0, i1, j0, j1, A, v0, v1) $← AO(·)
1,2 (state);

4. A′ runs tx $← Trans((ski0 , bli0),P0, A0, v0) where the proof in tx is obtained from querying Ozk(tx[inputs],
tx[outputs]);

5. A′ runs b $← AO(·)
1,2 (tx).

Note that if Ozk(·) is a prover oracle then we are in Hybrid 1, and if Ozk(·) is a simulator oracle then
we are in Hybrid 2. Hence A′ runs and returns A1,2(h), and wins if and only if A1,2 also wins, giving
ε1,2 = εuzk.

Lemma 7. Hybrid 2 and Hybrid 3 are indistinguishable.
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Corollary 3. Hybrid 6 and Hybrid 7 are indistinguishable.

Proof. Let h0 be Hybrid 2, and hc for c ∈ {1, 2, 3, 4} be the the four sub-hybrids defined as part of Hybrid
3. Let A2,3 be an adversary that can distinguish hc from hc+1 with non-negligible advantage ε2,3.

Then from this we can construct an adversary A′ that breaks indistinguishability of the accounts (Defi-
nition 8). Let i∗ be the index of the account we are replacing in this hybrid. Let p = P 1(i∗) be the direct
predecessor of account i∗. Assume that p ∈ [m] i.e., acctp is the direct output of a GenAcct performed in the
Setup phase. Then A′ works as follows:
A′ gets as input (acct∗, acctb) and runs as follows:

1. A′ generates state $← Setup(1κ, ~v), but acctp is replaced with acct∗;

2. A′ implements the oracle O(·) as in hc with the following change:

• On the transact query that updates account p into account i∗, replace accti∗ with acctb;

• Reply to all other queries as in hc.

3. A′ outputs b′ $← AO(·)
2,3 (state).

We know that A2,3 did not ask for a disclose query on i∗ or p, as otherwise it would have immediately
lost the anonymity game. Note that if b = 0 then distribution in the game above is identical to hc and if
b = 1 then the distribution of the game above is identical to hc+1. Hence A′ wins the indistinguishability
game iff A2,3 wins, i.e., A′ wins with advantage ε2,3.

Now, assume that i∗ 6∈ [m]. Let q be the total number of queries that A makes to O(·). Then we know
that there exist a value k < q such that P k(i∗) ∈ [m]. Then, we can define a second series of sub-hybrids
hc,m where hc,0 is equal to hc from above and hc,k = hc+1. We have already proved that hc,0 and hc,1 are
indistinguishable. Note now that in hc,m it holds that P k−m(i∗) is a direct output of GenAcct. Thus we can
use the proof above to conclude that hc,m and hc,m+1 are indistinguishable.

Lemma 8. Hybrid 3 and Hybrid 4 are indistinguishable.

Corollary 4. Hybrid 5 and Hybrid 6 are indistinguishable.

Proof. Let h0 be Hybrid 3, and hc for c ∈ {1, 2, 3, 4} be the the four sub-hybrids defined as part of Hybrid 4.
Let A3,4 be an adversary that can distinguish hc from hc+1 with non-negligible advantage ε3,4. Then from
this we can construct an adversary A′ that breaks indistinguishability of the accounts (Definition 8). Let
i∗ be the index of the account we are replacing in this hybrid. Let f = F 1(i∗) be the direct successor of
account i∗. Remember that in Hybrid 3, all challenge accounts are already direct outputs of GenAcct. Then
A′ works as follows:
A′ gets as input (acct∗, acctb) and runs as follows:

1. A′ generates state $← Setup(1κ, ~bl). If i∗ ∈ [m], replace accti∗ with acct∗;

2. A′ implements the oracle O(·) as in hc with the following change:

• If i∗ 6∈ [m], when replying to the transact which adds a record (i∗, ski∗ , accti∗ , vi∗) to the memory of
the challenger, replace the account accti∗ with acct∗;

• When replying to the challenge query, replace acctf in outputs with acctb (and, as in the previous
hybrid, generate tx.π using the simulator).

• Reply to all other queries as in hc.

3. A′ outputs b′ $← AO(·)
3,4 (state).
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We know that A3,4 did not ask for a disclose query on i∗ or f , as otherwise it would have immediately
lost the anonymity game. Note that if b = 0 then distribution in the game above is identical to hc and if
b = 1 then the distribution of the game above is identical to hc+1. Hence A′ wins the indistinguishability
game iff A3,4 wins, i.e., A′ wins with advantage ε3,4.

Lemma 9. Hybrid 4 and Hybrid 5 are indistinguishable.

Proof. There are two differences between Hybrid 4 and Hybrid 5: (1) which accounts are included in P
and which are included in A (remember that in txx the accounts ix, jx are included in the set Px while the
accounts i1−x, jj−x are included in the set A) and (2) which balances are stored in accounts i′0, i′1, j′0, j′1 in
outputs. The change in (1) is purely cosmetic and produces identical distributions, since in both cases the
set inputs is obtained by permuting (Px ∪ Ax) with a random permutation ψ; the change in (2) produces
a computationally indistinguishable distribution, due to the hiding property of the commitment scheme
Commit used in the accounts.

Using the above lemmas and the triangle inequality, we get that a PPT adversary cannot distinguish
distinguish Hybrid 0 and Hybrid 9 with more than negligible advantage.

D Full proof of Quisquis satisfying theft prevention
Theorem 3. Quisquis satisfies theft prevention.

Proof. We prove the theorem using a sequence of hybrid games, as follows. Remember that challenge
queries are irrelevant in the context of theft prevention, as the adversary can only win as the result of a
verify query.
Hybrid 0. The original theft prevention game.
Hybrid 1. Same as Hybrid 0, but we run the extractor every time the adversary creates a malicious
transaction. That is, if the adversary queries (Verify, tx) to the oracle, the oracle runs state′ ← Verify(state, tx).
If state′ 6= ⊥, then the oracle replaces state = state′, and additionally uses the extractor to extract the witness
w used to generate the proof tx.π. Since we have weak simulation-extractable zero-knowledge, this extraction
outputs a valid witness.
Hybrid 2. Same as Hybrid 1, but we replace the zero-knowledge arguments with the output of the cor-
responding simulator of the zero-knowledge property. That is, if the adversary queries (transact,P, A, v)
to the oracle, the oracle runs tx $← Trans(sk,P, A, v), but replace the zero-knowledge arguments in tx with
simulated arguments. From the proof of Theorem 2, we get that Hybrid 0 and Hybrid 2 can be distinguished
with negligible advantage ε1,2 over a random guess.

Hence it suffices to analyse the adversary’s probability of breaking theft prevention in Hybrid 2.
Recall that instances are of the form x = (tx[inputs], tx[outputs]) and that the witness contains a tuple

(s∗, sk∗, bl∗) corresponding to the sender’s account, as well as the vector ~v.
Due to the soundness-extraction property of the NIZK, we know that the extracted witness must satisfy

the relation R(x,w) defined in Section 5.
Remember that we have defined V such that the sum of all balances in the system belongs to V. This

means that, for honestly generated transaction, all balances will always be values in V.
Remember that A winning means that there exists an honest account whose balance decreased as a result

of the submitted transaction tx.
There are now two possible cases:

Case 1: s∗ ∈ honest. In this case the adversary wins the game by transferring value from an honest account
(regardless of whether it is towards a maliciously controlled account or an unspendable one), which it should
not be able to. We can therefore reach a contradiction with the of UPK by extracting the secret key for an
honest party. We divide the proof in following sub-cases.
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Case 1.a: s∗ ∈ [m]. In this case the adversary A can be used to recover the secret key of an account which
is the direct output of GenAcct. Then, we can construct a reduction A′ to one-wayness of key-pair in the
following way: A′ gets as input a public key pk∗ and then:

1. A′ generates state $← Setup(1κ, ~bl), but replaces accts∗ with acct∗ constructed as (pk∗,Commit∗pk(bls∗ ; r)).

2. A′ implements the oracle O(·) as in Hybrid 2 with the following change:

• When replying to verify queries, check if the identity of the sender account is s∗. If so, output the
extracted secret key sk∗ and halt.

• Reply to all other queries as in Hybrid 2. (Note that, as the zero-knowledge proofs are simulated in
Hybrid 2, A′ never needs to use any secret key and therefore the reduction goes through).

Since in previous hybrids we have argued that we extract a correct witness, and since the relation R(x,w)
outputs 1 iff VerifyAcct(acct∗, sk∗, bls∗) = 1, which in turns outputs 1 iff VerifyKP(pk∗, sk∗) = 1, we conclude
that the output of A′ is a valid key-pair (pk∗, sk∗). Finally, note one-wayness of key pairs is trivially implied
by the unforgeability property (since the tuple (sk∗,Update(pk∗; r), r) for any r wins the unforgeability game).
Case 1.b: p = P 1(s∗) ∈ [m]. In this case the adversary A can be used to directly break the unforgeability
property of the UPK, since the predecessor of s∗ is the direct output of GenAcct. The reduction A′ works as
follows: A′ takes as input a public key pk∗, then:

1. A′ generates state $← Setup(1κ, ~bl), but replaces acctp with acct∗ constructed as (pk∗,Commit∗pk(blp; r)).

2. A′ implements the oracle O(·) as in Hybrid 2 with the following change:

• When replying to verify queries, if as a result of this transaction a record (s∗, accts∗ = (pk′, com′), sks∗ , bls∗)
is stored in the memory of the challenger, record r, the randomness extracted as part of the witness w.
Call this transaction txr.

• When replying to verify queries, check if the identity of the sender account is s∗. If so, record the
extracted secret key sk′. Call this transaction tx′.

• Reply to all other queries as in Hybrid 2. (Note that, as the zero-knowledge proofs are simulated in
Hybrid 2, A′ never needs to use any secret key and therefore the reduction goes through).

3. Finally A′ outputs (sk′, pk′, r).

Since in previous hybrids we have argued that we extract a correct witness, we have that the witnesses
extracted from both transaction txr and tx′ are valid. In particular, from txr we have that the relation
R(x,w) outputs 1 only if VerifyUpdateAcct(accts∗ , acct

∗, r = (r1, r2)) = 1, which in turn outputs 1 only
if VerifyUpdate(pk′, pk∗, r1) = 1. Moreover, from tx′, we have that the relation R(x,w) outputs 1 only if
VerifyAcct(accts∗ , sk

′, bls∗) = 1, which in turns only outputs 1 if VerifyKP(pk′, sk′) = 1. Thus, we conclude
that the output of A′ satisfies the condition of Definition 3 and thus we reach a contradiction.
Case 1.c: p 6∈ [m]. In the previous case we could replace the challenge key pk∗ in place of a key which
was identically distributed, i.e., another key which was the direct output of GenAcct as the result of the
Setup phase. In this last case we have to deal with the possibility that acctp is not the direct output of
GenAcct, and therefore we cannot directly reach a contradiction with Definition 3. We deal with this case by
simply replacing acctp with a freshly generated account, which easily follows from the indistinguishability of
accounts. The proof is identical to the proof of Lemma 7, and is therefore omitted.
Case 2: s∗ ∈ corrupt. In this case the adversary can only win by transferring more value than what is
currently in the balance of one of the corrupt accounts. For simplicity, assume that this is a transaction from
a single (corrupted) sender to a single (corrupted) receiver, where the adversary uses a vector of values ~v.
Let v′ be the value by which the sender’s balance is decreased and v the value by which the receiver value is
increased. Since the proof checks that

∑
i vi = 0, we conclude that v′ = −v. The relation also checks that

v ∈ V (as part of the check performed in VerifyUpdateAcct). Let (s∗, accts∗ , sks∗ , bls∗) be the record relative
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to the sender’s account in memory before the transaction tx. Then the fact that the adversary wins implies
that bls∗ − v 6∈ V (i.e., bls∗ − v < 0). Let sk∗, bl∗ be secret key and balance extracted from tx. Due to the
soundness of the proof we know that bl∗ − v ∈ V (this is checked as part of VerifyAcct). This implies that
bl∗ 6= bls∗ .

Thus, to win in this case, the adversary has to produce an opening of the account (and therefore the
commitment) which is different than the one stored in memory, thus getting an immediate contradiction
with the binding property of the commitment Commit using the following reduction A′:

1. A′ generates state $← Setup(1κ, ~bl).

2. A′ implements the oracle O(·) as in Hybrid 2 with the following change:

• When replying to verify queries, check if the pair (sk∗, bl∗) for account accts∗ , extracted as part of the
witness of the zero-knowledge proof π satisfies bl∗ 6= bls∗ , where bls∗ is the current balance for account
s∗ stored in the memory of the challenger.

• Reply to all other queries as in Hybrid 2.

3. A′ outputs (accts∗ , sk
∗, bl∗, sks∗ , bls∗).

By assumption of A winning the game, it must be the case that VerifyAcct(accts∗ , (sk∗, bl∗)) = 1, and by
construction it holds that VerifyAcct(accts∗ , (sks∗ , bls∗)) = 1. Since VerifyAcct outputs 1 only if VerifyCom
outputs 1 on the same input, then the output of A′ is a successful break of the binding property of VerifyCom.

In case we considered a transactions with multiple receivers (say n), we need to be careful about the
magnitude of the value

∑
i6=s∗ vi = −vs∗ . In particular, we need to make sure that no “wrap around” is

possible. Let V = {0, . . . , V } and the message space of the commitment schemeM = {0, . . . ,M}. Then we
additionally need the restriction that −nV mod M 6∈ V.

E Proof of security of the zero-knowledge protocol
Lemma 10. R1 ∧ R2 ∧ R3 as defined in NIZK.Prove(x,w) implies relation R in Section 5.2.

Proof. Let (x1, w1) ∈ R1, (x2, w2) ∈ R2, (x3, w3) ∈ R3.
Since (x1, w1) = (inputs, inputs′, (ψ1, ~τ1, ρ1)) ∈ R1, we have that inputs′i = (pk

τ1,i
ψ1(i)

, comψ1(i) · pk
ρ1
ψ1(i)

),
where inputsi = (pki, comi).

Since (x2, w2) = ((inputs′, outputs′, acctδ, acctε), (sk, bl, ~v′, ~r)) ∈ R2, by setting vi = v′ψ−1(i), s
∗ = ψ−1(1),

R∗ = ψ−1([2, t]) and A∗ = ψ−1([t+ 1, n]), we have the following:

• From VerifyUD(inputs′i, outputs
′
i, acctδ,i) = 1 we get that

outputs′i = (pk
τ1,i
ψ1(i)

, comψ1(i) · pk
ρ1+τ1,iri
ψ1(i)

· (1, gv
′
i)).

• From VerifyUpdateAcct(inputs′i, outputs
′
i, 0; 1, ri) = 1 ∀i ∈ [t+ 1, n] we get that vi = 0 for i ∈ A∗.

• From VerifyNonNegative(acctε,i, v
′
i, ri) = 1 ∀i ∈ [2, t] we get that vi ∈ V for i ∈ R∗.

• From VerifyAcct(outputs′1, (sk, bl + v′1)) = 1 we get that bl + vs∗ = bl + v′1 ∈ V.

• From VerifyDelta({acctδ,i}, {acctε,i}, ~v′, ~r) = 1 we get that
∑
i vi = 0.
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Since (x3, w3) = (outputs′, outputs, (ψ2, ~τ2, ρ2)) ∈ R3, by setting ψ = ψ1 ◦ ψ2, u1,i = τ1,ψ(i)·τ2,i and
u2,i = ρ1 + τ1,ψ2(i)(rψ2(i) + ρ2), we have that

outputsi = (pk
τ1,ψ(i)τ2,i
ψ2(ψ1(i))

, comψ2(ψ1(i)) · pk
ρ1+τ1,ψ2(i)(rψ2(i)+ρ2)

ψ2(ψ1(i))
· (1, gvψ2(ψ1(i))))

= (pk
u1,i

ψ(i), comψ(i) · pk
u2,i

ψ(i) · (1, g
vψ(i)))

= UpdateAcct({inputsψ(i), vψ(i)}; (~u1, ~u2)).

Finally, since VerifyAcct is agnostic to updates of the public key, we get that VerifyAcct(outputsψ(s∗), (sk, bl+
vs∗)) = 1. Hence (x,w) ∈ R, where x = (inputs, outputs) and w = (sk, bl, ~v, r = (~u1, ~u2), ψ, s∗,R∗, A∗).

Corollary 5. The Fiat-Shamir transform of Σ gives us a NIZK argument of knowledge of the same relation
which is perfectly complete, computationally zero-knowledge, and an argument of knowledge in the random
oracle model.

Proof. From Lemma 10 it is sufficient to show that Σ is a public-coin SHVZK argument of knowledge of the
relation R1∧R2∧R3. The completeness and argument of knowledge properties follow from the completeness
and argument of knowledge of the sub-arguments Σ1, Σ2 and Σ3 (extracting the witnesses for Ri from the
proofs of Σi will extract a witness for R1 ∧ R2 ∧ R3 similar to the reasoning in Lemma 10).

To argue that the overall protocol is zero-knowledge, we construct a simulator that given (inputs, outputs),
uses the simulators of the underlying sigma protocols to generate the zero-knowledge proofs. In particular,
it does the following:

1. Create (inputs′, outputs′) as sets of freshly generated random accounts such that the pk part of inputs′i and
outputs′i are the same.

2. Create acctε by doing CreateDelta(inputs′,~0), but throwing away the acctδ part.

3. Create acctδ by doing the inverse of the UpdateDelta function.5

We use a sequence of hybrid arguments to show that the overall result is indistinguishable from an honestly
generated proof.

1. Hybrid h1 outputs the honestly generated proof

(inputs′, outputs′, acctδ, acctε, π1, π2, π3).

2. Hybrid h2 replaces π1 with a simulated proof π′1 using the simulator of Σ1.

3. Hybrid h3 replaces π2 with a simulated proof π′2 using the simulator of Σ2.

4. Hybrid h4 replaces π3 with a simulated proof π′3 using the simulator of Σ3.

5. Hybrid h5 replaces the values inputs′ with a set of randomly generated accounts.

6. Hybrid h6 replaces the values outputs′ with a set of randomly generated accounts (such that the pk part
of inputsi and outputsi are the same), and acctδ by an inverse of the UpdateDelta function.

7. Hybrid h7 replaces the values acctε with a set of randomly generated (g, h,Commit(g,h)(vi; ri)) such that∑
i ri =

∑
i vi = 0.

5I.e., the unique accounts such that UpdateDelta(inputs′, acctδ) = outputs′.
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Hybrids h1 and h2 are perfectly indistinguishable due to the perfect zero-knowledge property of the shuffle
argument. Similarly, hybrids h3 and h4 are perfectly indistinguishable. Hybrids h2 and h3 are computation-
ally indistinguishable due to the zero-knowledge property of Σ2. Hybrids h4 and h5 are computationally
indistinguishable due to the indistinguishability property of accounts.The reduction here goes through since
all ZK proofs are simulated and hence the witnesses of the proofs are not needed in the reduction. Similarly,
hybrids h5 and h6 are computationally indistinguishable since the distribution of acctδ is uniquely defined
by the distributions of (inputs′, outputs′), and hybrids h6 and h7 are computationally indistinguishable due
to the computationally hiding property of commitments. Hence, using the triangle inequality we get that h1
and h7 are computationally indistinguishable.
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