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ABSTRACT
The core technical component of blockchains is consensus: how to
reach agreement among a distributed network of nodes. A plethora
of blockchain consensus protocols have been proposed—ranging
from new designs, to novel modifications and extensions of con-
sensus protocols from the classical distributed systems literature.
The inherent complexity of consensus protocols and their rapid
and dramatic evolution makes it hard to contextualize the design
landscape. We address this challenge by conducting a systematiza-
tion of knowledge of blockchain consensus protocols. After first
discussing key themes in classical consensus protocols, we describe:
(i) protocols based on proof-of-work; (ii) proof-of-X protocols that
replace proof-of-work with more energy-efficient alternatives; and
(iii) hybrid protocols that are compositions or variations of classical
consensus protocols. This survey is guided by a systematization
framework we develop, to highlight the various building blocks
of blockchain consensus design, along with a discussion on their
security and performance properties. We identify research gaps
and insights for the community to consider in future research en-
deavours.
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1 INTRODUCTION
Blockchains lie at the foundation of Bitcoin and other cryptocur-
rencies, which have a total global market capital of over $220B as
of May 2019 [1]. In addition to the financial industry, blockchains
have been employed in a diverse array of use cases, ranging from
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voting, through social networking, to the sharing economy. Despite
their useful properties and applications, adoption of blockchains is
nowhere near as ubiquitous as their traditional counterparts due to
their performance limitations. These properties are deeply related
to the consensus protocol—the core component of the blockchain—
and we believe this is where future efforts to improve blockchain
performance and scalability should be concentrated.

The consensus protocol enables a distributed network of nodes
to agree on whether a data item should be added to the blockchain.
A plethora of consensus protocols exist—ranging from classical
consensus (e.g., Fault Tolerance and Byzantine Fault Tolerance
protocols), through probabilistic consensus such as proof-of-work
(PoW), to committee-based consensus that repurposes classical pro-
tocols to the blockchain setting. We lack a clear understanding
of the performance and security trade-offs in the design of sys-
tems based on blockchains. A number of studies seek to improve
the understanding of consensus protocols, but these efforts are
fragmented across two research communities. (1) The distributed
systems community is focussed on classical consensus protocols,
where the literature is vast and complex, and needs additional effort
to be tailoured to blockchains [22, 85, 93]. (2) The network security
community is focussed on new blockchain consensus protocols,
which is characterized by high-volume, fast-paced work. In this
case, systematization efforts are further fragmented across different
consensus themes, such as proof-of-work [16, 29, 47, 89, 99] and
proof-of-stake [46].

Contributions. This paper presents a unified perspective on
the design landscape of blockchain consensus protocols, that spans
both the classical and the recent blockchain-driven eras. We de-
velop a systematization framework (Section 3), which is employed
to conduct a comprehensive survey that maps how consensus pro-
tocols have evolved from the classical distributed systems use case
to their application to blockchains. We first discuss key themes
in classical consensus protocols (Section 4), and then shift focus
to PoW approaches popularized by Bitcoin (Section 5). Section 6
discusses proof-of-X (PoX) schemes, which is an umbrella term for
systems that replace PoW with more useful and energy-efficient al-
ternatives. In the next two sections, we look at hybrid systems based
on novel compositions of classical consensus primitives, or that
combine classical consensus with PoW or PoX (Sections 7 and 8).
We leverage our systematization of knowledge to identify gaps in
existing literature and draw insights for future work—these have
been highlighted throughout the paper (under the headings ‘Gaps’
and ‘Insights’).
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Scope. Capturing a longitudinal and representative view of a
topic as rich as consensus is challenging. We forego in-depth ex-
ploration in favour of capturing the breadth. Instead of describing
individual works which would be clearly infeasible, we map out the
landscape by extracting and evaluating high-level design themes
in blockchain consensus protocols, and compare these with the
classical literature on consensus where relevant. The primary focus
of this paper is consensus in permissionless blockchains, where
anyone can join the network; where relevant, we refer to permis-
sioned blockchains explicitly. We focus on seminal and represen-
tative works. In the area of blockchains, a large volume of work
is published in non peer-reviewed venues and as whitepapers for
industrial platforms. Where possible, we prioritize papers published
in peer-reviewed venues. The intended audience of this paper is
systems and security researchers and engineers to help them under-
stand the building blocks of blockchain consensus design. Therefore
we do not attempt to provide formal definitions as are common in
the distributed systems and formal security communities. Through-
out the paper, we highlight under ‘Discussion’ the security and
performance tradeoffs due to different blockchain consensus de-
sign choices. However, we intentionally do not provide a direct
comparison between systems. This is because this paper focuses on
the bricks that make up the blockchain consensus design space—
protocols can suitably combine these bricks to achieve different
security and performance properties.

2 BACKGROUND
We present basic concepts related to consensus and blockchains.
We refer readers interested in detailed, formal consensus definitions
to the work by Garay and Kiayias [45].

Consensus. The consensus protocol enables a distributed net-
work of nodes to agree on the total order of some input values. In the
blockchain context, consensus helps reach agreement on whether
transactions should be accepted or rejected, and in which order. A
transaction specifies some transformation on the blockchain state.
If a transaction passes validity and verification checks (transaction
validation), it is included in a candidate block (a set of transactions)
to be added to the blockchain.

Consensus Leader. Consensus protocols might have a leader
node that coordinates with other nodes to reach consensus. The
leader is usually effective for an interval called an epoch or a
round. If the epoch expires (or upon a fault), a new leader is
elected. Leader election refers to the mechanism used to select
the leader; it can be chosen deterministically (e.g., round-robin) or
non-deterministically (e.g., cryptographic lottery) from the candi-
date nodes.

Incentives. Incentive compatibility refers to the mechanism de-
signed to financially motivate nodes to participate in the consensus
protocol. Typically this is achieved as nodes are rewarded with
in-band coins (i.e., a block subsidy and transaction fees) for pro-
ducing blocks. As a result, nodes will naturally compete amongst
themselves as their reward is proportional to the number of blocks
they can produce. Thus the network is intuitively a free-market as
nodes are encouraged to purchase resources and compete amongst
themselves, and it is self-sustaining as nodes will only compete
while the in-band reward has intrinsic real-world value. Blockchains

that use smart contracts require clients to include fees (e.g., ‘gas’
in Ethereum) to be paid to the nodes that execute the smart con-
tracts. This not only helps to incentivize node participation, but
also protects the system from overuse by discouraging clients from
submitting long computations that monopolize system resources.

Permissioned vs. Permissionless Blockchains. In permis-
sioned blockchains, identities of all the nodes that run consensus
are known (trusted or semi-trusted), and are controlled by a single
entity or federation. In permissionless blockchains, anyone can run
a node and join the network. The primary focus of this paper is
consensus in permissionless blockchains; where relevant, we refer
to permissioned blockchains explicitly. (Permissioned blockchains
sometimes imply limited write access. In this paper, we only refer
to its meaning within the context of consensus, as defined earlier.)

Consistency. The likelihood that a network of n nodes will
reach consensus on a proposed value; it can be either strong or weak.
In weak consistency, the shared state across nodes might diverge
temporarily leading to forks, and additional mechanisms are needed
for reconciling forks. This is related to eventual consistency—i.e.,
the blockchain will become consistent eventually. Finality refers
to the guarantee that a block will be permanently added to the
blockchain.

Validation. A number of extensions to consensus protocols
include a validation step, that ensures the transactions accepted
are valid—however the validation rules must be deterministic and
uniform across all nodes, and does not afford nodes any discretion
about what constitutes a valid message.

Properties. In terms of the properties expected from a consen-
sus protocol, we consider liveness and safety as enumerated by
Cachin et al. [22]. For liveness, validity ensures that if a node broad-
casts a message, eventually this message will be ordered within the
consensus, and agreement ensures that if a message is delivered
to one honest node, it will eventually be delivered to all honest
nodes. For safety, integrity guarantees that only broadcast messages
are delivered, and they are delivered only once, and total order en-
sures that all honest nodes extract the same order for all delivered
messages.

Synchrony Assumptions. Networks may be synchronous or
asynchronous, or offer eventual synchrony [36]. In a synchronous
network the delays messages may suffer can be bound by some
time ∆. On the other hand, in asynchronous networks messages may
be delayed arbitrarily, and there exists no reliable bound ∆ for their
delay. Networks with partial synchrony (or eventual synchrony,
or semi-synchronous networks) assume that the network at some
stage will eventually be synchronous despite potentially a long
period of asynchrony.

Network Propagation. Consensus protocols make certain as-
sumptions about how messages will be propagated across nodes
within the network. In point-to-point channels, there is a pairwise
connection between all nodes which is both reliable and authenti-
cated. In the peer-to-peer (p2p) messaging model, a node ‘diffuses’
a message into the network, which is expected to eventually reach
all honest nodes with some probability. Every node knows a set
of other nodes (peers)—when a message is received, nodes diffuse
it by passing it on to their peers. A node may not be aware of the
identities or number of other nodes in the network. Gossip-based
protocols rely directly on this assumption by considering that each
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Figure 1: Systematization framework, following the chronological evolution of blockchain consensus protocols, with (not exhaustive) exam-
ples.

node has a point-to-point connection with at least a subset of the
network; the size of that subset is a security parameter.

Communication Complexity. The communication complex-
ity of a consensus protocol refers to the maximum number of mes-
sages exchanged between the nodes in a single run of the consensus
protocol. Note that a single run might involve multiple rounds of
message exchanges before it completes (i.e., consensus is reached).

Performance. The performance of consensus protocols is usu-
ally defined in terms of throughput (i.e., the maximum rate at which
values can be agreed upon by the consensus protocol), scalability
(i.e., the system’s ability to achieve greater throughput when con-
sensus involves a larger number of nodes) and latency (i.e., the time
it takes from when a value is proposed, until when consensus has
been reached on it).

AdversaryModel for Consensus.Adversarymodel is the frac-
tion of malicious or faulty nodes that the consensus protocol can
tolerate (i.e., it will operate correctly despite the presence of such
nodes). This is usually referred to as the failure model in the dis-
tributed systems literature. In the crash failure model, nodes may
fail at any time—but they fail by stopping to process, emit or receive
messages. Usually failed nodes remain silent forever, although a
number of distributed protocols consider recovery. On the other
hand, in the byzantine failures model, failed nodes may take arbi-
trary actions—including sending and receiving sequences of mes-
sages that are specially crafted to defeat properties of the consensus
protocol. Another failure model in the context of consensus proto-
cols relates to network partition: when network devices fail (or are
attacked) such that the network splits into two or more relatively
independent subnets.

Adversary Model for Blockchain Consensus. Blockchain
consensus has extended the adversarial model to include several
new threats. In consensus protocols with weak consistency guaran-
tees, nodes might end up having different views of the blockchain
(forks) because of latency in propagation of transactions, and faulty
or malicious nodes. A related concept is that of double-spending
where a transaction consumes an asset which has already been con-
sumed by a previous transaction. DoS resistance defines resilience of
the node(s) involved in consensus to denial-of-service (DoS) attacks.
If the participants of the consensus protocol are known in advance,
an adversary may launch a DoS attack against them. In the context
of permissionless blockchains, Sybil attacks refer to an attacker’s
ability to create fake identities or subvert existing nodes, and take
over majority of the network [34].

Decentralization. This is a key property of the blockchain that
enables a number of other properties such as censorship resistance,
attack resistance and fault-tolerance. Decentralization has no for-
mal definition, but generally [18] refers to a system that: (i) is run
by multiple machines and has no architectural choke point (ar-
chitectural decentralization); (ii) is run by multiple independent
individuals or organisations (political decentralization); and (iii)
comprises multiple interfaces and data structures that can fully
operate independently, instead of acting as a single whole (logical
decentralization). In this paper, we discuss the impact of different
consensus design choices on decentralization, where relevant; how-
ever, a detailed discussion is beyond the scope of this paper and we
refer interested readers to the work by Troncoso et al. [92].
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3 SYSTEMATIZATION FRAMEWORK
We employ the systematization framework presented in Figure 1,
following the chronological order of how blockchain consensus
protocols have evolved.

Classical. Consensus protocols (Section 4) have been studied
in the distributed systems community for over two decades. These
protocols were intended for closed, small groups of nodes.

Elected Leader. The need to achieve consensus in open, de-
centralized networks motivated the design of protocols based on
elected leaders that write to the blockchain. This may involve a
combination of steps, usually applied sequentially: (i) selection re-
source refers to selecting a set of nodes based on some resource
they own, for example via mining power in proof-of-work (Sec-
tion 5), stakes in proof-of-stake (Section 6), trusted hardware etc.;
and (ii) selection mechanism refers to a technique that is used to non-
deterministically elect the leader. This typically takes the form of a
cryptographic lottery—e.g., a random beacon, a periodically gener-
ated pseudo-random number, which allows the nodes to determine
if they have been elected as the leader.

Hybrid Single Committee. The key limitation of protocols
with elected leaders is their low performance and fault-tolerance,
and weak consistency. This led to the design of hybrid single-
committee consensus protocols (Section 7) where multiple nodes
coordinate to collectively write to the blockchain. Formation refers
to how the members of the committee are chosen; it can be permis-
sioned or permissionless (Section 2). In permissionless blockchains,
anyone can run a node and join the network. This may involve a
combination of steps—i.e., selection resource and selectionmechanism
described earlier for ‘elected leader’ protocols—usually applied se-
quentially to elect a committee. Nodes within the committee reach
agreement on a value via intra-committee consensus. Intra-committee
configuration means how the nodes are assigned to the committee;
either members serve on the committee permanently (static), or
they are changed at regular intervals (dynamic).

Hybrid Multiple Committee. Single-committee consensus
suffers from poor scalability, which motivated the design of hybrid
multiple-committee consensus protocols (Section 8). This incurs ad-
ditional coordination between the committees via inter-committee
consensus to reach agreement on a value among nodes across mul-
tiple committees. The inter-committee consensus protocol may be
run entirely by the committees (non-mediated), or may be medi-
ated by an external party (mediated). Inter-committee configuration
defines how nodes are assigned to the committees in a multiple
committees setting; it can be static or dynamic. When multiple
committees are involved in consensus, an important consideration
is how they will be organized in terms of topology.

4 CLASSICAL CONSENSUS
In this section, we provide an overview of key themes in classical
consensus literature studied since the 1970s, with the goal to con-
textualize rest of the paper. We will revisit some of these concepts
when discussing committee-based consensus (Sections 7 and 8).

Two-Phase Commit. Jim Gray, in 1978, proposed the two-
phase commit protocol [51], allowing a transaction manager to
atomically commit a transaction, depending on different resources

held by a distributed set of servers called resource managers. Trans-
action commit protocols enable distributed processing, and thus
scalability—but do not provide resilience against faulty resource
managers, or more generally nodes. In fact, two-phase commit suf-
fers a deadlock in case a resource manager fails to complete the
protocol, requiring the introduction of more complex three-round
protocols allowing recovery [86]—i.e., the distributed resource man-
agers being able to release the locks held on resources. Since poten-
tially a crucial resource may only be available on a single resource
manager, any failures inhibit progress towards accepting dependent
transactions.

Consensus, Atomic Broadcast and State Machine Replica-
tion. The need for consensus, or atomic broadcast protocols, in
distributed systems originates from the need to provide resilience
against failures across multiple nodes holding replicas of a database.
Atomic broadcast [28] allows a set of servers to agree on a value
associated with an instance of the protocol; and consensus protocols
extend this to agreeing on a sequence of values. This primitive is
closely associated with the state machine replication paradigm [84]
for building reliable distributed computations: any computation
is expressed as a state machine, accepting messages to mutate its
state. Given that a set of replicas start at the same initial state, and
can agree on a common sequence of messages, then they may all
privately evolve the state of the computation and correctly main-
tain consistency across the replicated databases they hold, despite
failures or network variations. The underlying consensus proto-
cols are characterized by the communication model, as well as the
failure model, assumed (Section 2).

Fischer et al. [42] show that deterministic protocols for consensus
are impossible in the fully asynchronous case, and have known
solutions in the synchronous case (also known as the “Byzantines
General’s Problem” [64]). The impossibility theorem does not take
into account computational bounds on the work nodes may do—
something that is exploited by both Nakamoto consensus, as well
as other cryptographic solutions [21], to overcome it.

Key Protocols. In the network security literature byzantine
nodes would be considered malicious or collectively controlled by
an adversary. Thus the byzantine setting is of relevance to security-
critical settings, and traditional consensus protocols tolerating only
crash failures such as Paxos [63], viewstamped replication [78] and
the more modern Raft [79] or Zab [55] cannot be used, unmodified,
in adversarial settings. Practical Byzantine Fault Tolerance (PBFT)
by Castro and Liskov [23] is the canonical protocol implementing
consensus in the the byzantine and partially synchronous setting.
Discussion.

PBFT and other consensus protocols employ replication to
achieve resilience against failures, not scalability. In fact the tra-
ditional literature on byzantine consensus does not discuss dis-
tribution of resources, in the context of a distributed or sharded
database, with the exception of a less known joint work by Gray and
Lamport on combining atomic broadcast with atomic commit [50].
As a result, one expects systems employing byzantine consensus
to see this protocol become a bottleneck, since its trivial applica-
tion would require all transactions to be sequenced by the quorum
of n nodes—using protocols that are slower than asking a single
processor to sequence them.
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Some newer BFT protocols [35, 75] even overcome impossibility
results [42], and provide both safety and liveness in a fully asyn-
chronous setting, through a randomized consensus algorithm. This
breakthrough, building upon the earlier work by Cachin et al. [21],
is of notable theoretical value—however, it cannot be extended to
permissionless blockchains having open node participation. Such
randomized BFT protocols have traditionally been more expen-
sive than deterministic ones, both in terms of communication and
cryptographic operation costs.

5 PROOF-OF-WORK CONSENSUS
PoW consensus protocols rely on a computational puzzle to elect a
leader that writes to the blockchain. As finding a solution to the
puzzle requires a significant amount of computational work, so
a valid solution is considered to be a proof-of-work (PoW). PoW
was first presented by Dwork and Naor in 1993 as a technique for
combatting spammail, by requiring the email sender to compute the
solution to a mathematical puzzle to prove that some computational
work was performed [37]. PoWwas independently proposed in 1997
for Hashcash by Back, another system for fighting spam [11].

5.1 Nakamoto Consensus
In 2008, Bitcoin [76] was published by a pseudonymous author
Satoshi Nakamoto. Its key innovation is the use of PoW as a sybil-
resistance mechanism, combined with a rule to choose between
different versions of the blockchain (fork-choice rule), to achieve
consensus—also called Nakamoto consensus after its originator—in
an open, permissionless network. It was not until 2015—7 years
after Bitcoin was first released— that it was formally proved that
Bitcoin PoW is a consensus protocol [44]. While the technical com-
ponents of Bitcoin originate in previous academic literature [77],
their composition in Bitcoin to achieve consensus is novel.

Nakamoto consensus is based on a PoW puzzle derived from
Hashcash [11], which requires finding a hash of a block that is
less than a target integer value t . As the hashing algorithm is pre-
image resistant, the puzzle can be solved only by including random
nonces in the block until the resulting hash is valid (i.e., less than
t ). The difficulty of the puzzle is therefore adjustable: decreasing t
increases the number of guesses (and thus work) required to gener-
ate a valid hash. The nodes that generate hashes are called miners
and the process is referred to as mining. Miners calculate hashes of
candidate blocks of transactions to be added to the blockchain, and
are rewarded with new coins if they find a valid block. The value t
is reset by the network every 2016 blocks such that miners are suc-
cessful (and can append a block to the blockchain) probabilistically
every 10 minutes (also called the inter-block interval).
Insight 1. Nakamoto consensus relies on the cryptographic paradigm
of provers and verifiers. Miners take on the role of provers who mint
blocks, and every other node is a verifier who validates (and potentially
rejects) blocks according to a list of globally agreed consensus rules.
This is the “trust, but verify” paradigm.

5.2 Forks in Proof-of-Work Blockchains
Forks allow an attacker to potentially double-spend assets on the
blockchain. A fork occurs if two miners find two different blocks

that build on the same previous block. An attacker must have suffi-
cient computing power to be able to create a fork of the blockchain
that has more accumulated work than the chain that is to be over-
ridden. Thus the threat model assumes an adversary that has the
majority of the computing power on the network (referred to as a
51% attack). The security threshold of the network is the percentage
of computing power required to conduct a 51% attack.
Insight 2.Nakamoto consensus is a fork-tolerant protocol as all nodes
reach eventual consistency about the blockchain’s content, whereas
classical consensus focuses on fork-avoidance protocols as nodes must
have a consistent view after every epoch.

Resolving Forks: Nakamoto consensus resolves forks by accept-
ing the ‘longest chain, which has the greatest PoW effort invested
in it’ as the correct one. In practice, this is implemented as the
chain with most accumulated work, as it is possible for a shorter
chain to have more PoW than a longer chain. New policies have
been proposed for the selection of the main chain in the forked
blockchain to obtain a more resilient and scalable system than Bit-
coin. GHOST [88] exploits blocks that are not on the main chain,
achieving higher transaction rates without undermining Bitcoin se-
curity. Unlike Bitcoin’s linear blockchain, GHOST organizes blocks
in a tree structure. The tree is shaped by the blocks that successful
miners choose to extend. The chain selection algorithm chooses
the heaviest path as main chain, where a block’s weight depends
on how dense its subtree is.

5.3 Scaling Proof-of-Work Consensus
One approach for increasing the throughput of Nakamoto con-
sensus is to increase the block size (i.e., the capacity to confirm
new transactions) or reduce the inter-block interval (i.e., increase
the block frequency). Decker and Wattenhofer showed this scaling
approach is limited due to delays in block propagation [33]. Intu-
itively, if the block size is increased or the frequency decreased,
then this provides time for a miner to produce a competing block
while the solved block is in transit across the network and as a
result this directly reduces the network’s reliability as it increases
the chance of forks occurring. Gervais et al. [47] further demon-
strated that Bitcoin’s block frequency can be reduced to 1 block per
minute without reducing the security threshold of the existing net-
work, modelling the bandwidth distribution of the network around
real-world broadband data.

Bitcoin-NG [39] shares Bitcoin’s trust model, but improves per-
formance by separating leader election from transaction serializa-
tion (i.e., appending them to the blockchain). In each epoch, a leader
is selected via PoW as in Bitcoin. Unlike Bitcoin, the leader can
continue to append transactions to the blockchain for the duration
of its epoch, until a new leader is elected. This allows the network’s
throughput to be limited only by the network’s propagation delay,
bandwidth and the processing capacity of the nodes.

Another approach for improving scalability, used by Spectre [87],
is to allow miners to mine blocks concurrently by replacing the
‘linear’ blockchain structure with a Directed Acyclic Graph (block-
DAG). Off-chain approaches to improve Bitcoin scalability such as
the Lightning Network [81] have also been proposed, where parties
can execute transactions off the main consensus path, and submit
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only the final state to the blockchain. A more detailed discussion
of off-chain solutions is outside the scope of this work.

5.4 Mining Centralization in Proof-of-Work
Blockchains

To reduce the variance of rewards, miners form mining pools to
aggregate resources and share rewards amongst themselves. Mining
pools are typically operated by a pool master who decides the
content of a block and distributes the mining task to every member
in the pool. Mining pools undermine the goal of decentralization
as it empowers a small set of pool masters to control what is added
to the blockchain.

To mitigate centralization, the PoW mechanism should be fair :
the number of valid blocks mined by a miner should be propor-
tional to its computing power in the network. A number of tech-
niques have been proposed to create decentralized mining pools.
SmartPool [69] implements a practical decentralized mining pool
through an Ethereum smart contract, with the smart contract re-
placing the traditional pool manager. On the other hand, Miller et
al. [74] discourage mining pools by proposing non-outsourceable
proof-of-work puzzles, in which rewards can be entirely stolen
from the pool manager by the entity solving the puzzle, without
producing any evidence of its implication. DECOR+HOP [66] en-
forces fairness between miners by allowing them to share the profit
when competing blocks are generated.

Some PoW blockchains like Ethereum and Monero pursue ASIC-
resistant PoW algorithms, which have been designed such that
implementing these in an ASIC will yield no significant speedup
in solving the puzzle. The aim is to prevent centralization due to
specialized mining hardware that only a few companies can pro-
duce. For example, Bitmain—one of the largest producers of mining
hardware used in Bitcoin—was found responsible for Antbleed, a
notorious backdoor that let Bitmain shut down all hardware re-
motely [26].

5.5 Incentives in Proof-of-Work Consensus
Protocols

The security of Nakamoto consensus relies on economically incen-
tivizing miners to validate and mine blocks, by rewarding them
with new coins.
Insight 3. Nakamoto consensus aligns financial incentives to self-
enforce rational behaviour of miners. This provides a self-sustaining
network as miners are rewarded in-band coins for extending the heav-
iest chain and for including recent transactions.

However, previous work has shown that Nakamoto consensus
is not completely incentive-compatible, and there is a potential
tragedy of the commons. Collectively, miners should have an in-
terest in the long-term success of the cryptocurrency—but in the
short term, miners may deviate from the honest mining strategy to
maximize their profit [15, 38, 68]. Moreover, protocol-level attacks
exist that lower the security threshold of Bitcoin below 51%, such
as selfish mining, stubborn mining, Fork After Withholding (FAW)
attack, and eclipse attack. We only discuss here the most notable of
these, selfish mining (see Gervais et al. [47] for a detailed analysis
of the security of PoW blockchains).

Selfish mining [40] allows selfish miners to generate more valid
blocks than their computing power would normally allow them to
if they were following the honest mining protocol. In selfish mining,
instead of broadcasting a solved block immediately to the network,
the miner withholds their solved block from the rest of the network
and begins solving the next block. This provides the selfish miner
a head start on solving the next block and effectively wastes the
remaining network’s computational power as they attempt to solve
an already solved block. If the network is close to catching up with
the selfish miner, then the selfish miner can release a portion of
their withheld blocks to the network (i.e., the selfish miner can
be 1 block ahead for the longest and heaviest chain) and overtake
the honest network. Using this mining strategy, it is possible to
conduct a 51% attack against the network with as little as 25% of
the network’s computing power.

A number of mitigations to selfish mining have been proposed.
For example, Fruitchain [80] mitigates selfish mining by using two
independent mining processes on top of each other: in addition to
the PoW to create blocks, Fruitchain requires an additional PoW
to mine a new type of block, called ‘fruit’. Blockchain transactions
are included into these fruits, and the fruits are included into the
blocks created by the first mining process. This mechanism prevents
selfish miners from dropping honest blocks from the blockchain by
releasing their withheld blocks because eventually, an honest block
will be created and will include back all the dropped fruits.

6 PROOF-OF-X CONSENSUS
One of the biggest criticisms of Bitcoin is that it is based on power-
intensive PoW that has no external utility, and makes it prone to
centralization (Section 5.4). These limitations of PoW motivated a
new class of consensus protocols based on proof-of-X (PoX) that
replace wasteful computations with useful work derived from alter-
native commonly accessible resources, or remove computational
work altogether. We discuss the most prominent PoX protocols,
based on stake, space and time—out of a number of other alterna-
tives [16], notably proof-of-deposit where a miner’s voting power is
proportional to the amount of coins locked (e.g., Tendermint [62]),
and proof-of-coin-age where the quantity of coins is weighed by
their coin-age (adopted by Peercoin1).

6.1 Proof-of-Stake
In proof-of-stake, participants vote on new blocks weighted by
their in-band investment such as the amount of currency held in
the blockchain (stake). A number of recent systems have provably
secure proof-of-stake protocols [30, 32, 56]. A common theme in
these systems is to randomly elect a leader from among the stake-
holders (participants) via lottery, which then appends a block to
the blockchain. Leader election may be public, that is the outcome
is visible to all the participants [30, 56]. Alternatively, in a private
election the participants use private information to check if they
have been selected as the leader, which can be verified by all other
participants using public information [32].
Insight 4. Leader election based on private lottery is resilient to DoS
attacks because participants privately check if they are elected before
1https://peercoin.net/

https://peercoin.net/
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revealing it publicly in their blocks, at which point it is too late to
attack them.

The nature of the lottery varies across different systems, but
broadly it is either collaborative (i.e., requires coordination between
the participants) or independent. In Ouroboros [56], the participants
(a random subset of all stakeholders) run a multiparty coin-tossing
protocol to agree on a random seed. The participants then feed
this seed to a pseudo-random function defined by the protocol,
that elects the leader from among the participants in proportion
to their stake. The same random seed is used to elect the next set
of participants for the next epoch. In Ouroboros Praos [32] and
Snow-White [30] participants independently determine if they have
been elected. Snow-White selects participants for each epoch based
on the previous state of the blockchain, who independently check
if they have been elected as the leader. Snow-White uses similar
criteria for leader election as Bitcoin, that is finding a pre-image
that produces a hash below some target. However, participants
are limited to compute only one hash per time step (assuming
access to a weakly synchronized clock) and the target takes into
account each participant’s amount of stake. In Ouroboros Praos,
participants generate a random number using a verifiable random
function (VRF). If the random number is below a threshold, it indi-
cates that the participant has been elected as the leader, who then
broadcasts the block along with the associated proof generated by
the VRF to the network. Ouroboros and Ouroboros Praos distribute
rewards among all the participants regardless of whether or not
they win the election. Snow-White employs the incentive structure
of Fruitchain [80] (Section 5.5).
Insight 5. PoW’s leader election eligibility is out-of-band, and all
nodes verify the leader election’s result only so far as to find the
longest and heaviest chain.Whereas in proof-of-stake the entire leader-
election protocol transcript is recorded in-band which increases the
nodes’ storage, bandwidth and validation overhead for every block.

A challenge for proof-of-stake systems is to keep track of the
changing stakes of the stakeholders. Ouroboros requires that shift
in stakes is bounded, meaning the statistical distance is limited
over a certain number of epochs. Additionally, Snow-White looks
at stakes sufficiently far back in time to ensure that everyone has
agreed on the stake distribution.

Outside academia, some deployed cryptocurrencies incorporate
proof-of-stake (e.g., Peercoin), but their designs have not been
rigorously studied. Ethereum Foundation has been considering
using proof-of-stake for some time [14], and some systems like EOS2
use delegated proof-of-stake, where participants elect delegates of
their choice for mining.

Attacks and Mitigation. Proof-of-stake results in three new
attacks compared to Nakamoto consensus [24]. The first is called
the nothing-at-stake attack where miners are incentivized to extend
every potential fork. Since it is computationally cheap to extend a
chain, in the case of forks rational miners mine on top of every chain
to increase the likelihood of getting their block in the right chain.
One way of dealing with this is to introduce a penalty mechanism:
a miner producing blocks on different forks is penalized by having
2https://eos.io

part of their stake taken [30]. Another mitigation against nothing-
at-stake is to remove the opportunity for forks in the consensus
protocol altogether as proposed by Algorand [48]. The second at-
tack is called the grinding attack where a miner re-creates a block
multiple times until it is likely that the miner can create a second
block shortly afterwards. This attack can be thwarted by ensuring
that a miner is not able to influence the next leader election by
using an unbiasable source of randomness or a non-deterministic
leader election. In the third attack called the long-range attack, an
attacker can bribe miners to sell their private keys. If these keys
had considerable value in the past, then the adversary can mine pre-
vious blocks and re-write the entire history of the blockchain. This
is possible because the bribed miners have already received their
external utility for these coins (i.e., sold the coins for fiat currency),
and no longer have a stake in the system. Thus the bribed miners
can send their keys to the adversary at almost no cost. This can
be thwarted by central checkpointing: some entity (e.g., one of the
main developers) declares that some blocks are final if they are suf-
ficiently far in time, or by requiring participants to lock their coins
for a longer period of time than the duration of their participation.

6.2 Proof-of-Space
In proof-of-space, participants vote on new blocks weighted by
their capacity to allocate a non-trivial amount of disk space. Perma-
Coin [73] repurposes Bitcoin’s PoWwith a more broadly useful task:
providing a robust, distributed storage. In PermaCoin, eligibility for
the leader election requires participants to also store segments of
a large file. The file is distributed by an authoritative ‘dealer’ who
signs file blocks. To provide censorship-resistant file storage, the
file is fully recoverable from the participants in the event of a dealer
failure or shutdown. SpaceMint [53] employs a consensus protocol
based on a non-interactive variant of proof-of-space, where par-
ticipants generate and commit to a unique hard-to-pebble graph.
PermaCoin and SpaceMint have the same basic model as Nakamoto
consensus, so they inherit Bitcoin’s incentivization mechanism, as
well as its resilience against censorship and DoS.

Attacks andMitigation. Proof-of-capacity is vulnerable to cen-
tralization due to participants outsourcing the file storage to an ex-
ternal provider. To mitigate this problem, the proof-of-retrievability
in PermaCoin requires sequential read access to blocks in a pseu-
dorandom order: this directly increases the bandwidth latency in
case of outsourced storage, which reduces the miner’s chance of
finding a solution.

6.3 Proof-of-Elapsed-Time
Using the trusted enclave in Intel SGX, it is possible to replace
computational work with proof-of-elapsed-time [54]. Participants
request a wait time from their enclave and the chip with the shortest
wait time is elected as the leader. The newly elected leader can
provide an attestation alongside the new block to convince other
participants that: (i) it indeed had the shortest wait time, and (ii)
that it did not broadcast the block until after the wait time had
expired.

An alternative approach is called Resource-Efficient Mining
(REM) [98] that proposes computing useful PoW using trusted
hardware. Every instruction cycle for the useful PoW can be seen

https://eos.io
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as a lottery ticket: if a cycle wins the lottery, the participant is
authorized to mint a new block. To extend this model to arbitrary
work, the authors introduce a two-layer hierarchical attestation.
The first layer certifies that useful PoW was performed, and the
second layer attests that the program (and its input) incremented
the counter for instruction cycles appropriately. A hash of both
layers is sent alongside a new block to prove that the participant
was authorized to mint it.

Attacks and Mitigation. Both proof-of-elapsed-time ap-
proaches suffer from two limitations. First, breaking a single piece
of trusted hardware enables the attacker to always win the lottery.
Both Sawtooth and REM argue that a statistical analysis of newly
minted blocks suffices to detect whether a chip can be compromised.
Second, the stale chip problem highlights that it is advantageous
to collect chips as this increases the probability of minting a new
block (i.e., every new chips is an additional lottery ticket). REM pro-
vides an economic analysis to show that a miner’s revenue source
originates from useful work, and not farming chips.
Discussion.

Centralization of the consensus protocol is an important issue
in PoX protocols (previously discussed in the context of PoW in
Section 5.4). To thwart the centralization problem, Brünjes et al. [17]
propose a reward scheme that achieves a desirable number of pools
in proof-of-stake blockchains.

In a proof-of-stake system, the “rich get richer” problem is partic-
ularly important as stake can get reinvested in the mining process
as soon as it is received. To solve this problem Fanti et al. [41]
propose a reward scheme that ensures that stake holders amplify
their stakes in an equitable way in order to ensure fairness in the
long term.

A general problem is the lack of suitable evaluation criteria
to compare PoX systems. Gauba et al. [46] provide a preliminary
investigation, but a formal model has not yet been adopted.

7 HYBRID CONSENSUS: SINGLE COMMITTEE
The elected leader approach suffers from poor performance as
well as safety limitations such as weak consistency and low fault-
tolerance. This has resulted in a shift towards consensus protocols
where a committee—rather than a single node—collectively drives
the consensus.

7.1 Committee Formation
This refers to the criteria used to allow nodes to join a committee.
Permissioned blockchains like Hyperledger [20] operate in a trusted
environment where nodes are granted committee membership
based on the organizational policy. In permissionless blockchains,
the committee is formed so as to thwart sybil attacks. Nodes are
usually allowed to join the committee based on a selection resource
such as PoW. In ByzCoin [57], the consensus committee is dynami-
cally formed by a window of recent miners. Each miner has voting
power proportional to its number of mining blocks in the current
window, which is proportional to its hash power. When a miner
finds a solution to the puzzle, it becomes a member of the com-
mittee and receives a share in the consensus. In addition to PoW,
Omniledger [58] also supports proof-of-stake to allocate committee
membership based on directly invested stake. Some permissionless

blockchains employ a further selection mechanism such as a lottery
to form the committee. In Algorand [48], all the nodes that have
PoX run a verifiable random function—they are promoted to the
committee if the output is below a certain value.
Discussion.

7.1.1 Sybil Resistance. A limitation of using PoW or PoX for sybil
resistance in permissionless committees is that the biggest min-
ers will have a greater likelihood of dominating the committee,
though at the cost of significantly more hashing power than re-
quired for single-leader PoW systems. Other PoX alternatives, rely-
ing on space, memory, or space-time, have been proposed but these
suffer from similar issues.
Gap 1. Protocols have also been proposed for sybil detection based on
the analysis of social networks and trust graphs [6], but those have
not been adapted to blockchains, besides the definitional framework
for Federated Byzantine Agreement Systems proposed by Stellar [72].

7.1.2 Coercion Resistance. Another consideration for bootstrap-
ping committees is to achieve coercion resistance, in the form of
requiring enormous effort for an adversary to suppress the overall
operation of the system. Coercion resistance properties are also
key to the success of other decentralized systems, such as BitTor-
rent [25], that are subject to take-down pressures by publishers.
Bitcoin itself was coincidentally proposed in 2008, the same year
when E-gold was declared illegal by the US Department of Jus-
tice and taken offline—illustrating that value exchange systems,
and monetary systems that are transnational and unregulated, will
come under fire by national monetary and law enforcement author-
ities. Systems such as Tor3 have survived in a highly adversarial
environment despite parts of its infrastructure, namely directory
authorities, being a closed consensus group. These authorities are
distributed geographically, and are under different jurisdictions and
managed by different organizations to preclude both collusion and
single jurisdiction attacks.
Insight 6. Single-committee blockchains may, through careful selec-
tion of nodes, achieve coercion resistance.

7.2 Intra-Committee Configuration
Intra-committee configuration means how nodes are assigned to
the committee. In static configuration, nodes are statically assigned
to the committee, and are allowed to stay on indefinitely. Static
configuration is typically employed in permissioned blockchains
like Hyperledger and RSCoin. In dynamic configuration, committee
members are changed periodically. This model is typically used in
permissionless blockchains as this helps thwart sybil attacks. Dy-
namic committee membership can take three forms. (1) In rolling
(single) membership, the committee is updated in a sliding window
fashion, i.e., a new node replaces the oldest committee member
periodically. In ByzCoin, when a miner finds a solution to the puz-
zle, it becomes a member of the committee and receives a share
in the current consensus window which moves one step forward
(ejecting the oldest miner). (2) Rolling (multiple) committee mem-
bership is a similar concept, where multiple committee members
are replaced periodically. Omniledger uses cryptographic sortition
3https://www.torproject.org

https://www.torproject.org
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to select a subset of the committee to be swapped out and replaced
with new members. (3) Some systems replace the full committee,
e.g., Algorand and Snow-White select the committee members for
each epoch using randomness generated based on previous blocks.
Discussion.

7.2.1 Identity Management. A number of recent blockchains [4, 31,
58] employ BFT for reaching consensus among committee nodes.
However, traditional BFT protocols are inherently ‘closed’, in the
sense that committee members need to have point-to-point, reliable
and authenticated channels between them (i.e., the view of the
network). In traditional BFT, nodes may employ a failure detector
that sends regular ping messages to detect when a member has left
the committee or an unreliable leader, and initiate a view change if
required. A limitation of this approach is that malicious members
can slow down or stall the committee by constantly generating false
alarms for eviction of legitimate members. Addressing this would
require rate-limiting the number of leave operations a member can
propose in a given time interval.
Gap 2. Traditional BFT protocols cannot accommodate open node
participation and high churn, especially in the dynamic committee
configuration which requires additional mechanisms to track com-
mittee members and their keys across reconfiguration events.

A naïve solution is for all nodes to regularly broadcast their
identity to the entire network (along with evidence that they have
been granted permission to join the committee) resulting in O(n2)
messages. A better approach to is to form a special committee that
offers directory services to new committee members [67]. How-
ever, this presents a dilemma: a static committee undermines de-
centralization, but forming a decentralized directory committee
suffers from the same challenges as the committee aims to solve in
the first place. Another technique, used by Omniledger [58], is to
record committee members for each round in a separate ‘identity’
blockchain—however, its details are not provided.
Insight 7. The challenges in identity management in BFT-based
permissionless blockchains has motivated a shift to gossip-based con-
sensus protocols [83] where a node is only required to know (and send
messages to) a small set of other nodes, and messages are diffused
across the network.

7.2.2 Liveness in Dynamic Intra-Committee Configuration. Dy-
namic intra-committee configuration improves security by raising
the bar for sybil attacks, but introduces a new challenge: how is live-
ness maintained during reconfiguration? One approach is to only
do rolling configuration, which has the benefit that the committee is
operational during reconfiguration as the operational members can
continue to process transactions while a fraction of the committee
is being reconfigured and bootstrapped. Omniledger uses crypto-
graphic sortition to select a subset of the committee to be swapped
out and replaced with newmembers. This is done in such a way that
the ratio between honest and byzantine members in a committee is
maintained. In Solidus [2], a new miner joining the committee can
propose transactions only once. This binds transaction proposals
to reconfiguration, so it is no longer possible for an old committee
to approve transactions concurrent to a reconfiguration event.

Gap 3.Maintaining liveness and security in dynamic intra-committee
configuration setting is an open and neglected research area in the
design of single-committee blockchains.

7.2.3 Denial-of-Service (DoS) Attack. An adversary can launch
DoS attack on the blockchain committee. Small statically config-
ured committees are particularly vulnerable. Systems that do a full
swap [32, 48, 67] of the committee, and have small epochs are highly
resilient against DoS attacks—but this may introduce liveness chal-
lenges (Section 7.2.2). Rolling configuration [57, 58] can be tuned
to provide optimal tradeoffs between DoS resilience and liveness.
Insight 8. A blockchain committee’s vulnerability to DoS attacks is
directly related to the intra-committee configuration, i.e., how fre-
quently and what fraction of committee membership changes (epoch,
dynamism).

7.3 Intra-Committee Consensus Protocol
The intra-committee consensus protocol ensures that the committee
members reach agreement on state of the blockchain. A number of
committee-based blockchains [4, 58, 67] use PBFT. The messaging
complexity of PBFT’s MAC-authenticated all-to-all communication
is O(n2). This is problematic for permissionless blockchains where
a committee can potentially have thousands of nodes. Another
approach to reach intra-committee consensus is based on gossip
protocols. These protocols are suited to permissionless blockchains
as point-to-point connections between the n nodes of the commit-
tee are no longer needed. Upon reception of a new transaction,
nodes query a subset of k randomly select others nodes; each of
those nodes replies with its view of the state of the system, and
initiates a similar query. The requesting node weights the replies
and potentially updates its own view of the state; this process is re-
peated until global consensus is reached. Avalanche [83] introduces
a gossip-based family of BFT protocols that have a communication
complexity ofO(k×n), where k << n is a security parameter. These
protocols are leaderless and present strong DoS and censorship re-
sistance.
Discussion.

7.3.1 Committee Leadership. Traditional BFT protocols proceed
in rounds, where consensus in each round is led by a committee
leader. The concept of a committee leader is not compatible with
permissionless blockchains that aspire to achieve the design goal
of decentralization. An adversary can concentrate its DoS attack
on committee leaders which are easy to discover by joining the
committee. As the leader is responsible for proposing transactions,
a malicious leader can prioritize transactions from which it can ben-
efit. While committee members can potentially detect a malicious
leader and trigger leader re-election (i.e., view change), this severely
degrades performance [7]. Solidus highlights a safety problem in
PBFT’s ‘stable’ leader which can potentially manipulate reconfig-
uration by waiting for a malicious miner to solve the puzzle, and
later nominating it on to the committee—allowing the committee
to gradually become dominated by corrupt members.
Insight 9. The concept of a leader in committee-based blockchains
introduces a number of challenges with respect to scalability, and
security (DoS attack, transaction censorship, and centralization). This
has motivated the design of leaderless consensus protocols.
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7.3.2 Optimizations. A number of optimizations have been pro-
posed to improve the performance of BFT consensus protocols.
Scheduling optimizations involve techniques to identify and exe-
cute non-conflicting transactions in parallel (and thus achieve high
throughput) by leveraging application-specific information [61].
Execution optimizations reduce latency by allowing clients [95] or
replicas [60] to speculatively execute transactions based on pre-
dicted results—if a fault is detected (i.e., the speculation turns out
to be incorrect), the client/replica rolls back its state to the last
checkpoint and re-executes the transactions based on the correct
results. Protocol optimizations refer to the committee’s ability to
switch between suitable BFT protocols according to varying net-
work conditions and performance requirements [52]. Hyperledger
uses pluggable and modular consensus in which the consensus pro-
tocol can be specified by the smart contract policy. Cryptographic
optimizations leverage advances in cryptography to optimize the
communication complexity of BFT. ByzCoin organizes the consen-
sus committee into a communication tree that uses a primitive called
scalable collective signing [91] which reduces PBFT’s messaging
complexity to O(n). Hardware optimizations enable consensus pro-
tocols to achieve high performance by exploiting advances in hard-
ware. The Intel Sawtooth lake system uses the Intel SGX and related
trusted execution environments to perform the duties related to or-
dering transactions, while ensuring safety and liveness [82]. Finally,
architectural optimizations improve performance by distributing
different consensus duties across independent subsets of replicas.
A useful paradigm (employed by Hyperledger) is to separate order-
ing from execution [96], which allows for a modular design where
transaction validation is performed by the fully trusted nodes (or
endorsers) while the semi-trusted nodes (ordering nodes) order the
transactions and add these to the blockchain. Others [94] argue
that distributed ledgers can decouple the ordering—performed in
public on cryptographic commitments of transactions—from the
validation containing private information, that is only checked by
a trusted cabal.
Insight 10. Separating ordering from execution [96] allows
committee-based blockchains to scale at the same rate as the core
ordering protocol, but does not provide any universal end-to-end veri-
fiability and undermines decentralization.

7.4 Incentivization
Classical BFT protocols assume two kinds of players: cooperative
and byzantine. This assumption works well in ‘closed’ group set-
tings where nodes are controlled by the same entity or federation.
However, permissionless blockchains need to provide incentives
to nodes for active participation in consensus [57, 58, 67] as well
as information propagation [2, 10, 13]. However, with no clear in-
centives, the cooperative committee members have nothing to gain
from participating in the consensus, which introduces a third kind
of player: a rational player that, for each action it performs, assesses
its expected utility in terms of the rewards it will receive.

This has led to the design of incentive-compatible consensus
protocols, where incentives are built into the core of the protocol
(e.g., Solidus [2]). Classical techniques such as rational cryptogra-
phy [19, 43] and the BAR model [3] could be adapted to work here.
Due to the unavoidable selfish behaviour observed in distributed

systems, the BAR model was introduced to construct systems that
can tolerate both Byzantine and rational players. The general ap-
proach is to analyze the classical BFT protocol in the presence of
rational players, and modify the sources of cost and benefits to
make it resilient to rational behaviour.
Insight 11. The committee should be reconfigured regularly to main-
tain a suitable committee size: large committees might result in trivial
rewards for individual committee members (or might lead to inflation
of client fees to account for the difference).

Discussion.
An important question in the context of committee-based

blockchains is who distributes the incentives? In leader-based sys-
tems like Solidus, the leader of the committee distributes incentives
among the first 2f + 1 responders. This approach has several limita-
tions: (i) a faulty or malicious leader might not divide the rewards;
(ii) there is no way to enforce that the leader rewards the genuinely
fast responders, so the leader can instead wait for its favourite mem-
bers to reply; and (iii) the notion of ‘fast’ is problematic in open,
permissionless networks where members located farther from the
leader are at a natural disadvantage.
Gap 4. Broadly, incentivization in committee-based blockchain con-
sensus protocols (with leader) has started to see some study, but is far
frommature. Incentivization in leaderless consensus protocols remains
largely unexplored.

This area will benefit from combining formal economic and game
theoretic analysis with cryptography, such as has already been done
in the blockchain community [9, 12, 59, 81].

8 HYBRID CONSENSUS: MULTIPLE
COMMITTEES

Single-committee consensus is not scalable and adding more nodes
to the committee decreases throughput—leading to the design of
consensus based on multiple committees. Transactions are split
among multiple committees (called shards) which then process
these transactions in parallel.

8.1 Committee Topology
When multiple committees are involved in consensus, an impor-
tant question is how they will be organized in terms of topology.
Chainspace [4] and Omniledger [58] have flat topologies, that is
all committees are at the same level. Elastico [67] has a hierarchi-
cal topology in which a number of ‘normal’ committees validate
transactions, and a leader committee orders these transactions and
extends the blockchain. In RSCoin [31], a permissioned blockchain,
the central bank controls all monetary supply while committees
(called mintettes) authorized by the bank validate a subset (shard)
of transactions. The transactions that pass validation are submitted
to the central bank which adds them to the blockchain.
Insight 12. Hierarchical topology facilitates configuration and man-
agement of committees in multi-committee blockchains, but under-
mines decentralization.
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8.2 Committee Formation
Multi-committee blockchains raise the additional issue of how to
map nodes to committees. In permissioned systems, the process of
assigning nodes to committees is usually done statically according
to the policy of the federation. Another approach is to dynamically
allocate nodes to committees. Permissioned systems like RSCoin
can use a trusted source of randomness for committee reconfigura-
tion, but this can be problematic in a permissionless setting which
would require a shared random coin [27, 49]. Generating good ran-
domness in a distributed way is a known hard problem: current
best solutions tolerate up to 1/6 fraction of byzantine nodes, while
incurring a high message complexity [8]. Among the more recent
solutions, RandHerd [90] provides a more scalable, secure multi-
party computation protocol that offers unbiasable, decentralized
randomness while tolerating a third of Byzantine faults. It brings
down the communication complexity toO(c2log(n)), where c is the
size the subgroups it uses.
Insight 13. In multi-committee blockchains, nodes should be as-
signed to committees in a non-deterministic way to stop an adversary
from concentrating its presence in one committee and exceeding the
byzantine-tolerance threshold.

Discussion.

8.2.1 Secure committees. The idea of scaling services built on state
machine replication (SMR) by splitting state (or sharding) among
multiple committees (also called partitions or shards) has been well-
studied in the context of traditional distributed systems [27, 49, 65].
These systems employ fault-tolerant BFT protocols at their core as
the nodes are controlled by a single entity or a group of entities
that collectively govern the system. Due to similar governance
assumptions, these techniques can be extended to permissioned
blockchains.

Sharding permissionless blockchains with byzantine adversaries
is challenging and tackled by only a few recent systems [4, 58, 67].
Individual committees can tolerate up to 33% of malicious members,
but if this is not the case then the malicious committee can compro-
mise all the transactions that touch the bad committee. Chainspace
starts mitigating this issue by making the author of the smart con-
tract responsible for designating the parts of the infrastructure
that are trusted to maintain the integrity of its contract. Moreover,
Chainspace provides an auditing mechanism allowing honest node
in honest committees to detect inconsistencies and discover the
malicious committee.
Gap 5. In multi-committee blockchains, a single malicious committee
can compromise security of the entire system. There is some prelim-
inary work on detecting a malicious shard, however there are no
systems today providing a recovery mechanism.

8.2.2 Committee Governance. Randomly mapping nodes to com-
mittees improves security, but prohibits finer governance. General-
purpose platforms like Chainspace might have different policies
within committees; for example some committees can be permis-
sioned while others can be permissionless. In this case it might
be useful to enforce node-to-shard mapping via smart contracts
that allow a node to join a committee trusted by the smart contract
provider.

8.2.3 Coercion Resistance. It is crucial for a value exchange system
based on blockchains that its clients believe it will exist as a medium
of value in the future—and thus the potential for future disruption
of the network, would reduce its value significantly. Thus, if the
key feature of PoW schemes is the robustness and coercion resis-
tance resulting from their openness, multi-committee blockchains
that sacrifice this property may fail regardless of their superior
performance. Similar to single-committee systems (Section 7.1.2),
multi-committee systems have to consider forming committees in
such a way that the system is resilient against coercion.
Insight 14. Multi-committee blockchains can achieve coercion resis-
tance within each committee via careful selection of nodes; and across
committees by creating ‘backup’ committees that mirror the ‘primary’
committees, and can replace primaries that are taken down.

8.3 Inter-committee Configuration
Inter-committee configuration means whether node assignment
to committees in a multi-committee blockchain remains static or
is periodically changed (dynamic). Omniledger periodically recon-
figures committees to ensure that a committee is never compro-
mised. This is achieved by a secure shard reconfiguration protocol,
based on RandHerd, that committee members run periodically and
autonomously. In every epoch, a random subset of members is re-
placed with new set of members that registered their interest in the
previous epoch.
Insight 15. Dynamic inter-committee configuration prevents an ad-
versary from subverting existing nodes in a committee and exceeding
the byzantine-tolerance threshold.

Discussion.

8.3.1 State Transfer in Dynamic Configuration. Multi-committee
blockchains achieve a different notion of verifiability from single-
committee blockchains, as it is no longer clear how to define a global
set of transactions. For example, in Omniledger and Chainspace ev-
ery committee is responsible for managing a subset of transactions,
and defines its own blockchain corresponding to those transactions.
If nodes are dynamically reconfigured across committees, there
needs to be a mechanism for ‘blockchain handover’.
Gap 6. Multi-committee blockchains achieve scalability by shard-
ing transactions and state, but tend to overlook the issue of state
transfer when node membership changes in dynamic inter-committee
configuration.

8.3.2 Liveness Issues in Dynamic Configuration. Similar to liveness
in dynamic intra-committee configuration (Section 7.2.2), multi-
committee systems need mechanisms to ensure liveness during
inter-committee reconfiguration. Omniledger addresses this issue
by swapping only a subset of committee members at a time, so
every committee has enough nodes to remain operational despite
ongoing partial reconfigurations.
Insight 16. To minimize system-wide liveness issues, inter-committee
reconfiguration events should involve only a few committees at a time
so the system is at least partially operational.

8.3.3 Denial-of-Service (DoS) Attack on Committees. An adversary
can launch Denial-of-Service (DoS) attack on one or more commit-
tees. Small statically configured committees are more vulnerable,
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while dynamic configuration makes committees more resilient to
DoS attacks.
Insight 17.Multi-committee blockchains are highly resilient against
DoS attacks—a successful attack will only affect the transactions
managed by the ‘victim’ committee, and rest of the system will remain
operational.

8.3.4 Committee Discovery and Identity Management. Elastico has
an explicit overlay setup (a fully-connected subgraph) for com-
mittees that describes how members in the same committee will
discover each other. Instead of broadcasting information which
has O(n2) messaging complexity, they provide a methodology that
requires O(nc) broadcast messages, where c is the number of com-
mittees. A special committee serves as a set of directories which can
be queried by a newmember to find other members in its committee.
The directories and the committee members can tolerate different
views of the member set up to a threshold. RapidChain [97] uses an
inter-committee routing protocol based on Kademlia [71] allowing
node discovery and message routing in O(log(n)) steps (where n is
the number of nodes in the system).
Gap 7. Multi-committee blockchains require each committee to have
a collective identity, and some way for the committees to discover
each other; most systems abstract these details.

8.4 Inter-Committee Consensus
In a multi-committee system, some transactions might manipulate
state that is handled by different committees. The inter-committee
consensus ensures that such transactions are processed consistently
and atomically across all the concerned committees. One approach
is to mediate the inter-committee consensus protocol via the client.
Omniledger uses an atomic commit protocol to process transac-
tions across committees. A transaction submitted by a client is
processed by the committees that manages the transaction inputs.
Each related committee validates the transaction, and returns a
proof-of-acceptance (or rejection) to the client, and locks the trans-
action inputs. To unlock the inputs, the client sends proof-of-accepts
to the committees that manage the transaction outputs, who add
the transaction to the next block to be appended. If the transaction
fails the validation test, the client can send proof-of-rejection to
the input committees to roll back the transaction and unlock the
inputs.

Another approach, used by Chainspace, is to run an atomic com-
mit protocol collaboratively between all the concerned committees.
This is achieved by making the entire committees act as resource
managers for the transactions they manage.
Discussion.

Client-driven inter-committee consensus protocols make the
assumption that clients are incentivized to proceed to the unlock
phase. Such incentives may exist in a cryptocurrency application
where an unresponsive client will lose its own coins if the inputs are
permanently locked, but do not hold for a general-purpose platform
where transaction inputs may have shared ownership.
Insight 18. Client-driven inter-committee consensus protocols are
vulnerable to DoS attack if the client stops participating midway,
resulting in the transaction inputs being locked forever.

Gap 8. Generally, inter-committee consensus protocols are relatively
immature, and their security has not been rigorously evaluated.

For example, some preliminary results [5] show the susceptibil-
ity of these protocols to replay attacks that allow an attacker to
double-spend or lock resources with minimal effort, and without
colluding with any nodes. The attacker records a target commit-
tee’s responses to the consensus protocol, and replays them during
another instance of the protocol. The attacks succeed even if the
individual committees satisfy the byzantine safety criteria.

8.5 Incentivization
Multi-committee blockchains need to provide incentives to commit-
tee members for active participation in the inter-committee consen-
sus protocol. Manshaei et al. [70] analyze the strategic behaviour
of rational nodes within committees using a game-theoretic model.
They propose an incentivization model where a shard coordinator
splits block rewards among participating nodes. This degrades the
DoS-resistance and censorship-resistance properties of the consen-
sus protocol, and undermines decentralization. Furthermore, they
relax the threat model to only consider rational adversaries, where
each node aims at maximizing its reward and at minimizing its cost
in the protocol participation; but do not consider the traditional
byzantine nodes which can arbitrarily deviate from the protocol.
Finally, fair incentivization for inter-shard communication remains
an open question.
Gap 9. There has been little investigation into how to build incen-
tives into inter-committee consensus protocols in the context of multi-
committee blockchains.

9 CONCLUSION
The last few years have seen a dramatic surge in blockchain con-
sensus protocols, as a result of which the field has grown increas-
ingly complex. We presented a comprehensive systematization of
blockchain consensus protocols. In a broader context, this work
has highlighted a number of open areas and challenges related to:
(i) gaps between classical consensus protocols and their applica-
tions to blockchains, (ii) security vs. performance tradeoffs, and
(iii) incentives. This longitudinal perspective makes a timely con-
tribution to the prolific and vibrant area of blockchain consensus
protocols: the wide-scale adoption of blockchains is constrained
by their performance and scalability limitations, and is desperately
in need of new and faster consensus protocols that can cater to
varying requirements and use cases.
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