
Who Am I? Secure Identity Registration on
Distributed Ledgers

Sarah Azouvi1, Mustafa Al-Bassam1, and Sarah Meiklejohn1

University College London
{sarah.azouvi.13,mustafa.al-bassam.16,s.meiklejohn}@ucl.ac.uk

Abstract. Bitcoin is a decentralized cryptocurrency that uses a ledger
(or “blockchain”) to keep track of the transactions made between its
users. Because it is a fully decentralized system and anyone can join, ev-
ery transaction is by necessity public. Thus, to preserve some semblance
of privacy, users in the system are represented not by their real-world
identities but by pseudonyms. While pseudonyms are acceptable for a
standalone cryptocurrency, the emergence of other potential blockchain-
based applications—e.g., using them to administer benefits and pen-
sions—poses a need to associate certain attributes with the users of
the system. In this paper, we address the question of how to register
identities and attributes in a system built on globally visible ledgers.
We propose a variety of possible solutions and in each case, we analyze
the tradeoff our solution provides between privacy (ensuring that no one
can associate the user’s real-world identity with the pseudonym or other
attributes they use on the ledger), usability (ensuring that verification
of their attributes poses the lowest possible burden to users), and in-
tegrity (ensuring that no one can impersonate a user). We also present
an implementation of one of our solution using Ethereum.

1 Introduction

Distributed ledgers, or “blockchains,” have received a lot of attention for their po-
tential applications: in addition to being used as the underlying architecture for
cryptocurrencies such as Bitcoin, they have been discussed for achieving decen-
tralized versions of identity management, DNS and public-key infrastructures,
notary publics, and file storage. While centralized versions of these systems al-
ready exist, the attraction of distributed ledgers is that they minimize the extent
to which users must place trust in a single entity such as a certificate authority.

In all existing deployments of distributed ledgers, users identify themselves
using pseudonyms—or even more anonymous identifiers, as in the cryptocur-
rency Zcash [4]— that they create themselves. The use of pseudonyms is im-
portant for two reasons: first, all existing distributed ledgers are transparent,
meaning their contents are globally visible, so having users reveal their real-
world identities would completely violate their privacy. Second, allowing users
to generate their own identifiers is necessary to preserve the openness of the
system and allow anyone to join.

While these “on-chain” pseudonyms are thus seemingly quite useful (and
to some extent necessary) in public distributed ledgers, there are certain cases
in which it may be necessary for someone to know some quality of the owner
of a pseudonym, e.g., gambling services would like to know that their users
are over 18. As a more involved example, we consider the case of governments
administering pensions or benefits on a distributed ledger; the argument that has
been made for doing this is that it could provide recipients with better visibility
into their spending and reduce fraud [13], but such programs have recently come
under significant scrutiny [9, 19] due to the fact that they allow the government
to identify its recipients on the ledger and thus track and monitor their spending.
In all of these settings, we would thus like the user to not be forced to reveal
to anyone the tie between their real-world identity and their pseudonym(s), but
rather to have some information that proves that the real-world user associated
with their pseudonym has been registered for some scheme (e.g., a pension) or
is associated with some required set of attributes (e.g., is over 18).

Our focus in this paper is on the role that registration of identity can play
in public distributed ledgers. While certain settings such as the ones described
above might require a centralized registration protocol (e.g., only the government
can decide whether or not a user is eligible for a pension), we also consider more
informal notions of registration such as the so-called “web of trust.” The web-of-
trust concept has historically been used solely within the setting of certificate
issuance, wherein users sign each others’ PGP identity certificates to vouch for
their authenticity, but has recently been discussed for the more general concept
of identity in distributed ledgers. These decentralized settings are particularly
appealing, as they remove the need for a single trusted party and provide an
opportunity to improve privacy for users.

Our contributions In this paper, we propose methods for achieving registra-
tion in decentralized settings— such as the web of trust— in which multiple
entities, in potentially flexible configurations, can act to validate attributes of a
user’s identity. We consider the registration of users’ pseudonyms, unless stated
otherwise. Our results focus on public open (or “permissionless”) ledgers, but the
same results would hold in the more restricted setting of “permissioned” ledgers.

Before presenting these methods, in Section 4 we consider both the functional
and security properties that we hope to achieve. In particular, we consider how
to provide privacy for users, so that even the registrar who sees their real-world
identity and signs off on their attributes cannot subsequently link that identity
to the pseudonyms that the user goes on to adopt within the ledger.

Due to space constraints, we relegate our centralized constructions to a full
version of the paper. In the decentralized setting, in Section 5, we begin with a
registration protocol in the style of the web of trust (but again, leveraging some
of the key properties of distributed ledgers), and then build off of it to achieve
protocols that provide better privacy and overall security.

Finally, in Section 6, we present an implementation of a decentralized regis-
tration protocol— that most closely resembles the web of trust, but allows for

the blinding of attributes—as an Ethereum smart contract. In this setting, users
can publish certain attributes (e.g., their Twitter handle) associated with their
Ethereum address. Other users or institutions can then publish a signature on
these attributes, reflecting a certain belief in its veracity. For attributes that the
user may not want to directly link to their real-world identity (e.g., a particular
Bitcoin or other cryptocurrency address), we provide a blind signing protocol
in which users can publish blinded attributes on the blockchain and other users
can sign them (and then the user can unblind them locally).

2 Related Work

In the setting of certificate issuance, our proposed systems are related to the idea
of a public-key infrastructure (PKI). Some of our proposed registration protocols
rely on a fixed set of specified registrars. These are related to the decentralized
PKIs proposed by Fromknecht et al. [14] and the ARPKI system [3], which both
distribute the process of certificate issuance to not only provide transparency
into the process but also prevent misbehavior in the first place. In the more
ad-hoc setting in which we allow any user to act as a registrar, our protocols are
related to the idea of the web of trust.

The notion of accessing a service in a privacy-preserving manner can seem-
ingly be achieved by anonymous credentials [11, 7, 8], which allow an issuer to
create credentials that vouch for a user’s identity or other generic attribute (e.g.,
their age). These credentials can then be shown to a verifier in a way that doesn’t
reveal anything to the verifier beyond the fact that the user possesses the at-
tribute (e.g., is over 18 years old). The idea of issuing anonymous credentials
has also been explored in the decentralized setting [15]. Our goal in this paper,
however, is to allow users to not only access services but also to openly engage in
existing blockchain-based systems using a registered identifier that—despite be-
ing vouched for by some registrar—cannot be linked to their real-world identity.
To the best of our knowledge, this goal cannot be achieved directly by any so-
lution based on anonymous credentials, at least not in an efficient manner: even
if credentials could be issued on-chain, they would be larger than a blockchain
address and issuance would consume a prohibitively high amount of gas.

Finally, a lot of recent work, both in the academic literature and in the
broader community, has focused on the question of using the blockchain to es-
tablish and manage identities (see, e.g., https://github.com/peacekeeper/
blockchain-identity for a comprehensive list). The ChainAnchor project [17]
presents a system for identity and access control, with the purpose of having
anonymous but verified on-chain identities, and of providing incentives to min-
ers to include only transactions from verified users. While some of the techniques
used are similar to our own, as they also adopt a form of registration, their focus
is on permissioned ledgers and on requiring registration for all users (which is
useful in, e.g., the setting of providing compliance with know-your-customer and
anti-money-laundering regulations). In terms of industrial solutions, uPort [12]
is a web identity management system that links an Ethereum address with a

name, profile picture, and other information like an email address or Twitter
account, and OneName is a similar initiative that does the same with Bitcoin
addresses. MIT also recently introduced its Digital Certificates Project [20] us-
ing the Bitcoin blockchain, with the goal of making “certificates transferable and
more easily verifiable.” These solutions have seen some level of adoption and we
borrow some useful features from each of them (e.g., we use a similar technique
to achieve revocation as the Digital Certificates project), but add the benefit of
additional points of comparison, and a security framework and analysis.

3 Background

3.1 The web of trust

The web of trust is a public-key authentication system established by PGP. In
this setting, if Alice trusts that a certain key belongs to Bob (e.g., they have
met in person), she can demonstrate this by signing his public key. The more
signatures associated with Bob’s public key, the more confident another user can
be that this public key does indeed belong to him and not to someone who wants
to impersonate him in order to intercept his communications.

In this system, one must of course be careful that it achieves some notion of
Sybil resistance; i.e., that an adversary has not simply created alternate identities
in order to vouch for their own impersonated key. To do this, users in the web
of trust can form a trust path. For example, if Alice trusts Bob’s public key, and
Bob trusts Dave’s public key, then there is a trust path from Alice to Dave and
she can have added confidence in Dave’s public key (as Bob’s public key, which
she trusts, was used to sign it). The shorter the trust path, the stronger the trust
can be in the associated public keys.

3.2 Distributed ledgers

Bitcoin relies on a peer-to-peer network to process transactions. Within the sys-
tem, users are represented by addresses addr, each of which is uniquely linked
to a pair of public and private ECDSA keys (pk, sk). We denote by addr(pk) the
address associated with pk. Every time Alice wants to pay Bob using Bitcoin she
generates a transaction tx(addr(pkA)→ addr(pkB)) and signs it with her private
key skA. (More generally, Bitcoin transactions can have arbitrarily many input
and output addresses, in which case the transaction must be signed by all pri-
vate keys associated with the input addresses, or even m-of-n multi-signature
transactions, in which a transaction must be signed by the private keys asso-
ciated with at least m of the input addresses.) She then broadcasts the signed
transaction to the network, which checks its validity and if applicable, adds it
to the blockchain, which acts as a public ledger of all such transactions.

To achieve more general functionality, Ethereum is a decentralized platform
that operates with the same underlying blockchain technology as Bitcoin, except
that it provides a Turing-complete scripting language. In Ethereum, a smart

contract consists of program code, a storage file, and an account balance. The
program’s code is executed by the network, which is responsible for maintaining
a consistent view of the state of every contract in the blockchain. Users can call
the contract by sending transactions to its address, which updates the state of the
contract in the blockchain. Moreover, the execution of a program’s instructions
induces a cost; the currency used to pay for it is called gas.

3.3 Cryptographic Primitives and Notation

Following standard cryptographic notation, we use x $←− S to denote the process
of sampling a member uniformly from S and assigning it to x. In particular,
we use x $←− [n] to denote sampling x uniformly from {1, . . . , n}. We use y ←
A(x1, . . . , xn;R) to denote running algorithm A on inputs x1, . . . , xn and random
coins R and assigning its output to y. By y

$←− A(x1, . . . , xn) we denote y ←
A(x1, . . . , xn;R) for R sampled uniformly at random.

Both Bitcoin and Ethereum rely on ECDSA for signing. In what follows we
use (pk, sk) $←− Sig.KeyGen(1λ) to denote key generation, σ $←− Sig.Sign(sk,m) to
denote signing, and 0/1← Sig.Verify(pk,m, σ) to denote verification.

Some of our decentralized registration protocols make use of public-key en-
cryption; here we denote the appropriate generic algorithms as c $←− Enc(pk,m)
(for encryption) and m← Dec(sk, c) (for decryption). In order to maintain com-
patibility with Bitcoin and Ethereum, the Elliptic Curve Integrated Encryption
Scheme (ECIES) provides an encryption scheme that is compatible with ECDSA;
i.e., one that allows for the encryption of ECDSA secret keys.

Finally, some of our schemes also make use of blind signatures. As initially
defined by Chaum [10], a blind signature provides an interaction—denoted
U(pk,m) ↔ S(sk)—wherein a user U obtains a signature from a signer S on
a message without the signer learning anything about the message. One com-
monly used construction is the RSA blind signature [16], which we use in our
constructions due to the lack—to the best of our knowledge—of any provably
secure blind signatures that are compatible with ECDSA.

4 Definitions and Threat Model

We consider a setting in which users maintain attributes about themselves and
require registrars to vouch for these attributes. For example, in order to register
the attribute “over 18 years old,” a user reveals their identity to the government,
who verifies their age. If they are over 18, the government registers the user’s
pseudonym, and they are now able to use it directly on the blockchain. For
Bitcoin, we consider only the registration of pseudonyms, but in Ethereum, we
consider the registration of more general types of attributes. Confirmation that
the user possesses a given pseudonym may in turn be carried out by verifiers
in order for the user to gain access to a particular service; i.e. for the users
to interact with the service using their registered pseudonyms (e.g., use it to

receive a pension from the government). We break this system down into four
phases: (1) setup, in which various actors may initialize certain information about
themselves (e.g., keys); (2) registration, in which the user interacts with the
registrar(s) to register their pseudonym(s) and receive some evidence of this; (3)
verification, in which the user interacts with the verifier to convince them that
certain pseudonyms have been registered; and (4) revocation, in which either the
registrar or (in some cases) the user revokes the registration of their pseudonym.

In order for the system to function, we must have a way for verifiers to
check certain information about users without the intervention of the registrar.
Let’s assume, for example, that the user wants to register as an attribute the
fact that they are over 18 years old so they can use a gambling service. If the
registrar must intervene in order to confirm this attribute—as in the recently
proposed brokered identification systems proposed in the US and UK [21, 18, 5]—
then the registrar must be online at all times and can link the user’s identity
with their usage of certain services, neither of which is desirable. If instead this
information is stored on a blockchain, then the verification step can happen in a
non-interactive, or passive, fashion, as the verifier can simply check for themselves
if the user’s pseudonym has been registered or not. If evidence of the registration
is not stored on the ledger, or if additional information is needed to “unlock” it
(e.g., it is encrypted), then it may be necessary for the user to send additional
information to—or otherwise interact with—the verifier. We capture these two
functional properties as follows:

Definition 1 (Passive/active verification). The verification process is pas-
sive if any verifier with access to the shared ledger can determine whether or
not a given user has registered a particular attribute. The verification process is
instead active if verifiers require additional information beyond what is available
on the shared ledger.

In order for the system to be secure, we would like to ensure that users are
able to register only accurate attributes about themselves; e.g., they can register
only for services, such as a pension scheme, that they are eligible to use. We must
also ensure that the individual identities of users are protected and cannot be
impersonated by anyone else. Once the user has completed the registration pro-
cess and is interacting within the system using only their registered pseudonyms
(e.g., their Bitcoin address), we should be able to ensure privacy ; i.e., that the
registrar cannot link the user’s real-world and “on-chain” identifiers (even across
separate attributes). We consider the different types of security we would like to
achieve as follows:

Definition 2 (Attribute integrity). Attribute integrity holds if attributes are
registered only to those users to whom they belong; i.e., in the presence of an
honest registrar, malicious users are unable to either register a fake attribute or
one that otherwise does not belong to them, and malicious registrars are unable
to impersonate an individual honest user.

Definition 3 (Attribute privacy). Attribute privacy holds if malicious enti-
ties (i.e., registrars and verifiers who are allowed to collude) are unable to link

Verification Attribute integrity Privacy

passive active

Basic web of trust G#
Blinded web of trust (with revocation) G# G#
Blinded web of trust (without) G#
Multi-Casascius
Mix-network

Table 1. The different properties of a blockchain-based registration protocol and
whether or not they are satisfied by our various constructions. No circle indicates
that the property is not satisfied, a filled circle indicates it is, and a partially filled
circle indicates it is partially satisfied.

the attributes a user claims within the system to their identity. In particular,
after the registration process is complete, malicious registrars are unable to dis-
tinguish the behavior of two users within the system that have different real-world
identities but the same set of attributes.

As we will see in our constructions, while revocation is useful and often nec-
essary—as keys are frequently compromised or lost— it also tends to require
active verification, as registrations cannot be deleted from the ledger (because
it is immutable) and it is difficult to efficiently prove the absence of a revoca-
tion entry. To thus separate out these complexities, we analyze our protocols
separately in the cases where revocation is and isn’t supported.

5 Decentralized Registration

The “web of trust” reputation system can be considered a decentralized regis-
tration process in which any user can act as a registrar. The more signatures
one accumulates for a particular attribute, the more trusted that attribute can
be considered. In the PGP web of trust, however, the system still uses a central
website to provide the lookup and signing services. In our constructions below,
we use the blockchain to provide these two services. We also consider additional
decentralized protocols that provide more robust properties or are useful in set-
tings outside of the web of trust.

5.1 Basic web of trust

One simple way of translating the web of trust into the setting of blockchains is
to have users create transactions that vouch for each others’ attributes. This can
be done either individually or— if a user knows in advance which other users
will vouch for their attribute—as a multi-input transaction.

Construction In the setup phase, the user optionally chooses a set of peers to
validate their attribute and act as registrars. We assume each registrar creates
and publishes an on-chain identity addrR.

In the registration phase, the user sends their identity id and address addrid to
each registrar, who determines if the address belongs to id (or just if id is a valid
identity), using some off-chain mechanisms that we omit here. If it does, each
registrar Ri creates a revocation keypair (pk

(i)
rev, sk

(i)
rev)

$←− Sig.KeyGen(1λ), and
publishes to the blockchain a transaction tx(addr(Ri)→ {addrid, addr(pk(i)rev)}). In
a basic system like Bitcoin this could involve sending a specific amount of bitcoins
to both the attribute and revocation addresses, while in a more sophisticated
system like Ethereum it could be a registration smart contract. Alternatively, if
the set of registrars is fixed ahead of time, a user can create an n-input n + 1-
output transaction and, after collecting signatures on it from each registrar,
publish it to the blockchain.

In the verification phase, when the user wishes to prove that they have reg-
istered the pseudonym, the verifier checks for the existence of these transactions
in the blockchain, and that the output address addr(pkrev) has not spent its con-
tents. (While this may seem inefficient, if we associate with the ledger a list of
unspent transaction outputs, or utxos, then it becomes significantly faster.)

Our approach to revocation here and in what follows is inspired by the ap-
proach of the MIT Digital Certificates project [20]. In the revocation phase, a
registrar Ri can revoke their registration by spending the contents of addr(pk(i)rev).

Security analysis

Verification is passive, as the verifier needs to check only whether or not certain
transactions are in the blockchain.

Attribute integrity is partially satisfied: restricting ourselves to the setting
of on-chain pseudonyms, no registrar is able to impersonate the user, as
they don’t know the private key corresponding to a user’s addrid. We could
strengthen integrity by requiring the user to also send a signature to prove
its ownership of addrid. Because the user can pick its own set of registrars,
however, we cannot unilaterally guarantee that a user can’t register a fake at-
tribute, as a malicious coalition of users could act to register each other’s fake
identities or attributes. This is the same problem faced in the web of trust,
however, and it can be mitigated by having the verifier place trust only in
registrars with whom they can create a trust path of a certain (short) length
(see Section 3.1). If malicious registrars can place themselves along this trust
path with a certain proximity to the verifier, this is analogous to launching
a Sybil attack, which can be prevented or detected in a variety of ways [2].
Thus, if the verifier sets a low threshold for the required length of the trust
path and a high threshold for the number of registrars required to have reg-
istered the attribute, we can argue that the probability that malicious users
can register fake attributes is low.

Privacy is not satisfied, as every registrar sees both id and addrid at the same
time.

5.2 Blinded web of trust

We provide a blinded version of the web of trust in which the user collects blind
signatures from a set of nodes and the verifier then verifies the unblinded signa-
tures. In Section 6, we present the results of an implementation and deployment
of this approach on Ethereum.

Construction In the setup phase, each registrar maintains as before a public
on-chain identity addrR linked to a public signing key pkR.

In the registration phase, the user sends their identity id to a registrar,
who determines whether or not they believe the user is eligible for the ser-
vice. If they do, the user and registrar engage in the blind signing protocol
U(addrR, pk) ↔ R(skR) at the end of which the user obtains a signature σ such
that Sig.Verify(pkR, pk, σ) = 1 and the registrar learns nothing about pk. The
registrar also creates a revocation keypair (pkrev, skrev)

$←− Sig.KeyGen(1λ), sends
it to the user, publishes to the blockchain a transaction tx(addrR → addr(pkrev)),
and maintains the mapping from id to pkrev. The user repeats this process with
every registrar. In the verification phase, the verifier verifies the unblinded sig-
natures, and the user proves they control the revocation address pkrev by signing
a message using skrev. The verifier verifies this signature, checks the existence
of the revocation transaction in the blockchain, and checks that addr(pkrev) has
not yet spent its contents.

In the revocation phase, the registrar spends the contents of addr(pkrev).

Security analysis

Verification is active, as the user must provide the signatures to the verifier.
To allow for passive verification without revocation, the user could, after some
delay, send pk and σ back to the registrar. The registrar would then check its
own signature and, if it verifies, publish to the ledger a transaction of the form
tx(addrR → addr(pk)). The verifier would, in this case, simply check for a the
transaction tx(addrR → addr(pk)) in the blockchain to verify the registration,
making it passive.
If we require revocation, however, we cannot achieve passive verification. The
user would need to prove to the verifier that the coins in their revocation
address are unspent, but to do that they would still need to prove that they
know the secret key associated with their revocation address—as otherwise
they could find and use any revocation address in the ledger—which requires
active participation.

Attribute integrity is partially satisfied, as malicious registrars cannot imper-
sonate users since they do not know the private key associated with the public
key they register. While the unforgeability of the blind signature guarantees
that a malicious user cannot fake the approval of an honest registrar, we can-
not guarantee that malicious users and registrars cannot collude to register
fake attributes. Instead, we can diminish the probability of this by requiring
short trust paths and numerous registrars.

Privacy is satisfied, as the unlinkability of the blind signature means that mali-
cious registrars are unable to link id and pk. If we consider malicious verifiers
as well, however, then the verifier could collude with the registrar and use
pkrev to de-anonymize the user. If we ignore revocation then privacy is (fully)
satisfied.

5.3 Multi-Casascius

In this setting, we assume that the registrar consists of several entities (e.g.,
different certificate authorities) that are assumed to have some level of trust in
each other; in particular, one registrar must be trusted by the others to correctly
verify the identity of the user. As an improvement over the previous construction,
these multiple entities make the registration process anonymous and provide
passive verification, even in the case where revocation is necessary.

Our solution is based on the two-factor key generation protocol used to gen-
erate physical Casascius coins [6]. In this process, the manufacturer (Casascius)
encodes on a physical coin a public key and a share of the associated secret key.
(Traditional Casascius coins have the full secret key, meaning the manufacturer
knows it and is able to spend the contents in the same way as the person who
bought it.) The user who purchases the product can then fold in their own share
of the secret key (which has been communicated to Casascius in the obfuscated
form of an “intermediate code”), which yields the full secret key needed to spend
the coins stored in the public key; thus, only the user and not the manufacturer
can spend the coins. Our solution attempts to retain this property, which allows
for attribute integrity, but provides a decentralized version for use in a wider
variety of settings.

Construction In the setup phase, each registrar Ri establishes some on-chain
identity addrRi

associated with a public key pki, and the user creates a keypair
(pkpub, skpub)

$←− Sig.KeyGen(1λ). The user chooses a set of registrars with whom
they want to register, as well as the order in which the registrars will proceed.
(This can be thought of as either a property of the system, or as a choice made
by the user that they communicate to the registrars.)

The registration phase proceeds in two phases. First, the user sends pkpub
and their real world identity id to R1. This registrar verifies that the user is
legitimate; if so, it picks a random secret key sk1, sends pk1 ← (pkpub)

sk1 to R2,
and keeps (for use in the second phase) the mapping sk1 7→ pkpub. Now, for all
i, 2 ≤ i < n, registrar Ri picks a random secret key ski, sends pki ← (pki−1)

ski

to registrar Ri+1, and keeps the mapping ski 7→ pki−1. Upon receiving pkn−1,
registrar Rn also picks a random secret key skn and forms pkn ← (pkn−1)

skn . It
then creates a revocation keypair (pkrev, skrev)

$←− Sig.KeyGen(1λ) and publishes
a transaction tx(addrRn

→ {addr(pkn), addr(pkrev)}) that acts as a registration.
In the second phase, the registrars create an onion to send the secret keys

back to the user. In particular, Rn encrypts skn using pkn−1 and sends cn
$←−

Enc(pkn−1, (skn,⊥)) to Rn−1. Now, for all i, n > i ≥ 2, Ri folds their own secret
key into the onion by sending ci

$←− Enc(pki−1, (ski, ci+1)) to Ri−1. At the end, R1

creates c1
$←− Enc(pkpub, (sk1, c2)) and sends this to the user. The user can now

recover all the individual ski values by computing (ski, ci+1) ← Dec(ski−1, ci)
for all i, 1 ≤ i ≤ n (where sk0 = skpub), and can thus reconstruct the public key
pkn as

pkn ← (pkpub)
∏n

i=1
ski ,

and the private key as skn ← skpub ·
∏n
i=1 ski.

In the verification phase, the verifier checks for the existence of the transac-
tion tx(addrRn

→ {addr(pkn), addr(pkrev)}) in the blockchain, and verifies that
the contents of pkrev are unspent.

In the revocation phase, R1 is the only registrar that can initiate revocation
(as it is the only one that knows id), but Rn is the only registrar that can spend
the contents of addr(pkrev). Thus, R1 starts by sending a revocation request for
key pk1 to R2. In turn, using the mapping ski 7→ pki+1, Ri sends a revocation
request for key pki to Ri+1 for all i, 2 ≤ i < n. When the request reaches Rn,
they can revoke the registration by spending the coins in addr(pkrev).

Security analysis

Verification is passive, as the verifier needs to check only whether or not certain
transactions exist in the blockchain.

Attribute integrity is satisfied. The first registrar R1 checks for the validity of
id, so a user cannot register a fake or ineligible identity as long as R1 is honest.
Similarly, because the user sends a value pkpub to the registrar that involves a
partial secret key skpub known only to them, even if all the registrars collude
the user is still the only entity who knows the full secret key associated with
pkn, which means they cannot be impersonated. We could require the user to
send a signature under skpub to additionally prove their ownership of pkpub.

Privacy is satisfied, as long as at least one registrar is honest. For all i, 2 ≤
i ≤ n, each registrar Ri knows the mapping between pki−1 and pki, and R1

knows the mapping between id and pk1. If all the registrars collude, they
can thus learn the mapping between id and pkn, but as long as one registrar
doesn’t collude with the others and n ≥ 3, the user cannot be de-anonymized.
Assuming that R1 does not know which node is acting as Rn, which is plausible
as it communicates directly only with R2, R1 cannot de-anonymize the user by
observing the transactions published in the blockchain. Timing attacks can be
mitigated by adding some random delays in the publication of the registration
transaction. Our next protocol will completely thwart this attack.

5.4 Mix-network

While the blinded web of trust protocol in Section 5.2 and the multi-Casascius
protocol in Section 5.3 provide strong privacy guarantees, the former has the

drawback that verification required active participation on behalf of the user,
and the latter has the drawback that all registrars must trust the initial one
to verify the identities and allows timing attacks. Here, we try to maintain the
advantages of these protocols but eliminate these drawbacks.

Without adopting the time delay from our protocol in Section 5.2, we cannot
achieve passive verification unilaterally. Instead, we consider how to provide
passive verification in a setting in which multiple users register at the same time
through the same set of nodes (e.g., voter registration), which also allows us to
provide each registrar with the ability to verify the set of identities for themselves
without violating privacy. As we will see, if k users register at the same time
then this provides each user with an anonymity set of size k.

Construction In the setup phase, each user j creates a keypair (pk(j)pub, sk
(j)
pub)

$←−
Sig.KeyGen(1λ), and each registrar Ri maintains some on-chain identity addrRi .
The order of registrars is determined beforehand.

The registration phase is similar to the two-phase process in Section 5.3.
First, each user j sends its public key pk(j)pub and id(j) to R1. This first registrar
then verifies that all the identities are legitimate; if not it drops the illegitimate
identities and waits to receive a legitimate set of k users. For each user, R1 then
picks a random secret key sk(j)1 , computes pk(j)1 ← (pk

(j)
pub)

sk
(j)
1 , and keeps the

mapping sk(j)1 7→ pk
(j)
pub. It then performs a permutation π1 on the identities and

sends the public keys {pk(j)1 }kj=1 and the permuted identities π1({id(j)}kj=1) to
R2. For all i, 2 ≤ i < n, Ri verifies for itself the set of identities and, if they are
eligible, picks for each user j a random secret key sk(j)i , computes

pk
(j)
i ← (pk

(j)
i−1)

sk
(j)
i ,

and keeps the mapping sk(j)i 7→ pk
(j)
i−1. It then applies its own permutation πi

to the mapping and sends the public keys {pk(j)i }kj=1 and the permuted iden-
tities πi ◦ · · ·π1({id(j)}kj=1) to Ri+1. Finally, Rn creates k revocation keypairs

(pk
(j)
rev , sk

(j)
rev)

$←− Sig.KeyGen(1λ) and k transactions

tx({addrR1
, . . . , addrRn

} → {addr(pk(j)n), addr(pk(j)rev)}). (1)

It signs each transaction tx(j) of this form with its private key.
In the second phase, the registrars must now jointly create the transactions

to publish to the blockchain, and create an onion (as in Section 5.3) to send
the keys back to the users. So, Rn first signs each transaction tx(j) of the form
specified in Equation 1 with its private key. It then encrypts sk(j)n with pk(j)n−1 to

form c
(j)
n

$←− Enc(pk
(j)
n−1, (sk

(j)
n ,⊥)) and sends the set {tx(j), c(j)n }kj=1 to Rn−1.

For all i, n > i ≥ 2, Ri incorporates its own signature into the transactions
tx(j), encrypts sk(j)i with pk

(j)
i−1 to form c

(j)
i

$←− Enc(pk
(j)
i−1, (sk

(j)
i , ci+1)), and

sends {tx(j), c(j)i }kj=1 to Ri−1.

Finally, R1 incorporates its own signature into the transactions tx(j) and,
now that they have the full set of signatures needed for validity, publishes these
transactions to the blockchain. It also creates c(j)1

$←− Enc(pk
(j)
pub, (sk

(j)
1 , c

(j)
2)) and

sends c(j)1 to each user j.
At the end, user j recovers the secret key shares sk(j)i in the same manner

as in in Section 5.3; i.e., they compute (sk
(j)
i , c

(j)
i+1) ← Dec(sk

(j)
i−1, c

(j)
i) for all

i, 1 ≤ i ≤ n (using sk0 = skpub), and computes the secret key as sk(j)n ←
sk

(j)
pub ·

∏n
i=1 sk

(j)
i and the public key as

pk(j)n ← (pk
(j)
pub)

∏n

i=1
sk

(j)
i .

In the verification phase, the verifier check for the existence of the transaction
in the blockchain and verifies that the contents of pk(j)rev are unspent.

As in Section 5.3, the revocation request can be initiated only by R1, but
revocation can be carried out only by Rn. R1 can initiate the process by sending
a revocation request for pk(j)1 (which represents id(j)) to R2. In turn, Ri transmits
the revocation request to Ri+1 using their partial key pk(j)i and their knowledge
of the mapping pk(j)i−1 7→ pk

(j)
i . Once this reaches Rn, it can spend the coins in

pk
(j)
rev to revoke the registration.

Security analysis

Verification is passive, as the verifier needs to check only whether or not certain
transactions exist in the blockchain.

Attribute integrity is satisfied, as long as one registrar is honest: every reg-
istrar verifies the set of identities {id(j)}kj=1 for themselves, so if one registrar
is honest then it will drop any fake identities and users cannot register fake
ones. As in our previous protocols, malicious registrars cannot impersonate a
user as they do not have access to the private key.

Privacy is satisfied, as k-anonymity is provided as long as one registrar is hon-
est. In particular, Ri knows only the mapping between pk(j)i−1 and pk(j)i , and
only R1 knows the mapping between id(j) and pk(j)1 . Thus, as long as not all
registrars collude, id(j) and pk(j)n are unlinkable.

6 Implementation and Deployment

We now present an implementation of the decentralized registration systems
described in Sections 5.1 and 5.2; i.e., a system that allow for decentralized
registration in both a standard (in which no privacy is achieved) and blinded
(in which privacy is achieved) fashion. Our implementation is built on top of
SCPKI [1], which implements a basic web of trust system on the Ethereum
blockchain. We extended SCPKI to supported a blinded web of trust.

6.1 Overview

We have developed an identity management system based on blind signatures
and deployed it on the Ethereum blockchain as a smart contract. As in SCPKI,
each user has their own identity on the blockchain that corresponds to an
Ethereum address. Using the methods of the smart contract, users can add at-
tributes to their Ethereum address, sign attributes, and revoke signatures. The
system also provides a way for users to search and retrieve attributes, by pro-
ducing Ethereum events, which allow clients to efficiently watch the blockchain
for new changes by a smart contract.

Due to the expensive fees of Ethereum data storage, data associated with
attributes may be stored off the blockchain but authenticated on the blockchain.
This can be done by adding an address (e.g., a URI) for the location of the
data instead of the data itself along with its cryptographic hash if necessary
for authenticity. The smart contract allows for the ability to store data using
IPFS (https://ipfs.io/) where the cryptographic hash of the data is also its
address.

The signing and verification of signature validity is performed client-side. As
described in Section 5.2, when checking a signature, the client must also look for
the existence of a revocation transaction as well as check the optional signature
expiry date. Because of the incompatibility discussed in Section 5.2 between
revocation and privacy, our implementation does not allow for the revocation of
blind signatures—only standard signatures can be revoked.

6.2 Technical specification

The smart contract is written in Solidity, a high-level language for writing
Ethereum contracts, and the client is written in Python. Our open-source imple-
mentation, based on SCPKI, consists of 1502 lines of Python and Solidity code.
The client is a command line console application and provides access to the smart
contract’s methods and functionality to search for user attributes, retrieve at-
tributes, retrieve signatures, and verify signatures. For the blind signature, we
use the RSA blind signature scheme with 2048-bit RSA keys.

Simple signing In the setup phase, the user generates their own Ethereum
address. To obtain a simple signature the user first adds an attribute to their
Ethereum address, by calling the method addAttribute and specifying the at-
tribute type and data. This creates anAttributeAdded event on the blockchain
containing the attribute properties, which can be detected by the client. Because
Ethereum events are indexable, the client can easily search for attributes. In the
registration phase, the registrar signs the attribute by calling the method sig-
nAttribute and specifying the ID of the attribute to sign and optionally an
expiry date of its signature. This creates an AttributeSigned event containing
the signature properties, including the Ethereum address of the signer. Because
only the owner of the private key of an Ethereum address can create transac-
tions originating from that address, this cryptographically proves that a specific

Ethereum address signed an attribute. In the verification phase, the verifier
checks the published signature on the user’s attributes, checking that there are
no revocations and that the signature has not expired.

Blind signing If a user wants to obtain a blind signature in order to anony-
mously register a public key, they first publish a blinded public key attribute
using the method addBlindedAttribute, providing the data for the blinded key
and specifying the ID of the registrar’s public key attribute on the blockchain
that the key is blinded for; i.e., specifying which registrar the user wants to
blindly sign the key. This creates a BlindedAttributeAdded event that can
be detected by the owner of the signing public key attribute. To blindly sign an
attribute, the registrar calls the method signBlindedAttribute on the blinded
public key attribute previously added by the user, providing the data of the sig-
nature, thnis is done client-side. This creates a AttributeBlindSigned event.
On receiving the event, the user can then unblind the signature client-side. In
the verification phase, the user shows the unblinded signature to the verifier (as
described in Section 5.2).

6.3 Costs

In Ethereum, every operation has a cost paid using gas. As of May 2017, this
cost can be translated into ether and USD using the exchange rate of 1 gas =
0.00000002 ether, and 1 ether = $192.00. Table 2 shows the cost of each operation

operation gas ether USD

publish contract 786,586 0.0157 3.01
add standard RSA attribute 70,952 0.0014 0.27
add standard RSA attribute (IPFS) 40,713 0.0008 0.15
sign standard attribute 49,904 0.001 0.19
revoke standard attribute 28,514 0.0006 0.12
add blinded RSA attribute 60,173 0.0012 0.23
add blinded RSA attribute (IPFS) 38,303 0.0008 0.15
sign blinded RSA attribute 58,012 0.0012 0.23
sign blinded RSA attribute (IPFS) 36,079 0.0007 0.13

Table 2. Cost for operations, where all data is stored on the blockchain.

when data is stored on and off the blockchain. Aside from the observation that
operations are relatively cheap—publishing the contract is the most expensive
step, at about $3, and all of the operations involving individual attributes cost
a few cents—we also see that the operations that involve adding and signing
attributes are significantly cheaper when the data representing attributes and
blind signatures is stored on IPFS.

7 Conclusions and Open Problems

In this paper, we have proposed different methods for achieving registration in
public distributed ledgers. We presented a decentralized setting, where registra-
tion is potentially flexible and can be done by several entities. For each case we
presented the trade-offs between security (in the form of privacy and integrity),
usability (in the form of passive or active verification), and efficiency. Moreover,
all our solutions use only lightweight cryptographic primitives, as opposed to
approaches that adopt zero-knowledge proofs or other advanced cryptography.
We have also implemented a decentralized registration process that operates on
the Ethereum blockchain and evaluated its costs and efficiency.

Our system doesn’t provide a mechanism for key recovery, but we view this
as an important open problem and an avenue for future research, especially in
the setting in which a user has accumulated many signatures on an attribute
and built up a robust on-chain identity.

Acknowledgements

This project was supported in part by EPSRC Grant EP/N028104/1.

References

1. M. Al-Bassam. SCPKI: A smart contract-based PKI and identity system. In
Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts,
BCC ’17, pages 35–40, New York, NY, USA, 2017. ACM.

2. L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, and A. Panconesi. SoK: The evo-
lution of sybil defense via social networks. In 2013 IEEE Symposium on Security
and Privacy, pages 382–396, Berkeley, California, USA, May 19–22, 2013. IEEE
Computer Society Press.

3. D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse, and P. Szalachowski.
ARPKI: Attack Resilient Public-Key Infrastructure. In Proceedings of ACM CCS
2014, pages 382–393, 2014.

4. E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from Bitcoin. In Proceedings of the
IEEE Symposium on Security and Privacy, 2014.

5. L. T. A. N. Brandão, N. Christin, G. Danezis, and Anonymous. Towards mend-
ing two nation-scale brokered identification systems. In Proceedings on Privacy
Enhancing Technologies, 2015.

6. M. Caldwell and A. Voisine. Passphrase-protected private key, 2016.
7. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-

mous credentials with optional anonymity revocation. In B. Pfitzmann, editor,
EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118, Innsbruck, Austria,
May 6–10, 2001. Springer, Berlin, Germany.

8. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous creden-
tials from bilinear maps. In M. Franklin, editor, CRYPTO 2004, volume 3152 of
LNCS, pages 56–72, Santa Barbara, CA, USA, Aug. 15–19, 2004. Springer, Berlin,
Germany.

9. R. Cellan-Jones. Blockchain and benefits - a dangerous mix? http://www.bbc.
com/news/technology-36785872. Accessed: 2016-08-04.

10. D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. L. Rivest,
and A. T. Sherman, editors, CRYPTO’82, pages 199–203, Santa Barbara, CA,
USA, 1982. Plenum Press, New York, USA.

11. D. Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

12. Consensys. uport: The wallet is the new browser. https://medium.
com/@ConsenSys/uport-the-wallet-is-the-new-browser-b133a83fe73#
.jquv8q5u3. Accessed: 2016-08-04.

13. L. Evenstad. Dwp trials blockchain technology for benefit payments.
http://www.computerweekly.com/news/450300034/DWP-trials-blockchain-
technology-for-benefit-payments. Accessed: 2016-08-04.

14. C. Fromknecht, D. Velicanu, and S. Yakoubov. A decentralized public key in-
frastructure with identity retention. IACR Cryptology ePrint Archive, Report
2014/803, 2014. http://eprint.iacr.org/2014/803.pdf.

15. C. Garman, M. Green, and I. Miers. Decentralized anonymous credentials. In
Proceedings of the NDSS Symposium 2014, 2014.

16. S. Goldwasser and M. Bellare. Lecture notes on cryptography. http://cseweb.
ucsd.edu/~mihir/papers/gb.pdf, 2000.

17. T. Hardjono and A. S. Pentland. Verifiable anonymous identities and access control
in permissioned blockchains, 2016. http://www.mit-trust.org/s/ChainAnchor-
Identities-04172016.pdf.

18. U. C. Office and G. D. Service. Introducing GOV.UK Verify, Sept. 2015. https:
//www.gov.uk/government/publications/introducing-govuk-verify.

19. G. Plimmer. Use of bitcoin tech to pay UK benefits sparks privacy concerns.
http://www.ft.com/cms/s/0/33d5b3fc-4767-11e6-b387-64ab0a67014c.html.

20. P. Schmidt. Certificates, Reputation, and the Blockchain, 2015.
21. U. S. P. Service. Federal cloud credential exchange (fccx), Aug. 2013. https:

//www.fbo.gov/spg/USPS/SSP/HQP/1B-13-A-0003/listing.html.

