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Abstract. We present Bingo, an adaptively secure and optimally re-
silient packed asynchronous verifiable secret sharing (PAVSS) protocol
that allows a dealer to share f + 1 secrets with a total communication
complexity of O(λn2) words, where λ is the security parameter and n is
the number of parties. Using Bingo, we obtain an adaptively secure val-
idated asynchronous Byzantine agreement (VABA) protocol that uses
O(λn3) expected words and constant expected time, which we in turn
use to construct an adaptively secure high-threshold asynchronous dis-
tributed key generation (ADKG) protocol that uses O(λn3) expected
words and constant expected time. To the best of our knowledge, our
ADKG is the first to allow for an adaptive adversary while matching the
asymptotic complexity of the best known static ADKGs.

1 Introduction

The ability of a party to distribute a secret among a set of other parties (i.e.,
secret sharing) is a fundamental cryptographic primitive, with applications such
as Byzantine agreement, threshold cryptography, and secure multiparty compu-
tation [17, 18, 37, 43, 46]. At its most basic level, secret sharing involves one
honest dealer, sharing one secret among a set of n parties, so that if at least t
parties coordinate they can reconstruct the secret (where notably an adversary
is assumed to control strictly fewer than t parties).

There are many functional enhancements of secret sharing, including verifi-
able secret sharing (VSS) [24], where parties can verify the validity of their shares
even in the face of a malicious dealer, and packed secret sharing [31], where a
dealer can deal m secrets in a way that is more efficient than just running
m iterations of the protocol. In terms of enhancements to the network model,
asynchronous secret sharing [9, 20] requires no assumptions about the delay on
messages between parties or the order in which they are received. Finally, and
crucially for systems that are expected to run for long periods of time, adaptively
secure secret sharing protocols [26] allow the adversary to corrupt parties over
time rather than starting with a static set of parties that it controls.



Verifiable secret sharing has traditionally seen many applications in multi-
party computation [23, 43, 45]. In recent years, people have also noticed the
potential of VSS for preventing malicious MEV (maximal extractable value) in
blockchains [27, 44]. Indeed, frontrunning-as-a-service companies such as Flash-
bots are able to extract millions of dollars of value by reordering transactions on
the Ethereum blockchain,6 and in doing so increase overall costs for users. Us-
ing VSS, parties could share their transactions among a set of validators rather
than sending them in the clear. It is crucial in this and many other real-world
settings for the VSS to be not only efficient but also adaptively secure even when
operated over an asynchronous network such as the internet.

Our main construction, Bingo, fills exactly this gap: it is an adaptively secure
packed asynchronous verifiable secret sharing (PAVSS) protocol that allows a
dealer to share f + 1 secrets with a total communication complexity of just
O(λn2) words, where n is the total number of parties and f is the number
of malicious parties. Additionally, Bingo is optimally resilient in assuming that
n = 3f + 1, and supports three different types of reconstruction:

– Reconstruction of a single secret, which does not reveal any information
about any non-reconstructed secrets.

– Given an index k, reconstruction of the sum of the k-th secrets shared by
several different dealers, which does not reveal any information about any
non-reconstructed secrets.

– Reconstruction of all secrets at once, which can be viewed as reconstructing
a degree-2f sharing.

Each of these has a word complexity of O(λn2) and requires a constant number of
rounds. In terms of assumptions, Bingo requires a PKI and a univariate powers-
of-tau setup [15] (of size O(λn) words) and is proved secure against algebraic
adversaries [32].

Using Bingo, we construct two more advanced primitives: validated asyn-
chronous Byzantine agreement (VABA) and distributed key generation (DKG).
These are both essential protocols in constructing secure distributed systems,
with DKG in particular emerging as an important tool for supporting a variety
of distributed applications [37, 42, 46]. Again, for both of these protocols to be
run in realistic distributed environments like the internet, it is essential that they
be asynchronous and adaptively secure.

We first use Bingo to construct an adaptively secure VABA protocol that
reaches agreement on messages of size O(n) and requires just O(λn3) words.
Second, we use Bingo and our VABA protocol to construct an adaptively se-
cure high-threshold asynchronous distributed key generation (ADKG) protocol.
Our ADKG protocol requires just O(1) expected rounds and O(λn3) expected
words, and has a secret key that is a field element (which in particular makes it
compatible with standard threshold signature schemes like BLS [13]). We rely
on the one-more discrete log assumption and prove security with respect to
algebraic adversaries [32]; recent work by Bacho and Loss suggests that these
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relatively strong assumptions may be needed to support adaptively secure DKG
for BLS [5]. To the best of our knowledge, ours is the first asynchronous protocol
to be proven adaptively secure, and even previous synchronous adaptively secure
protocols required Ω(n4) sent words [5, 19].

1.1 Technical overview

The conceptual decomposition of distributed protocols to a distributed com-
puting part against a weaker adversary and a cryptographic commitment and
zero-knowledge part goes back to the foundational result of Goldreich, Micali,
and Wigderson [35]. Here we present a high-level overview of Bingo by decompos-
ing it into two parts: an efficient distributed protocol that is resilient to omission
failures (i.e., failures that are non-malicious) and an efficient polynomial com-
mitment scheme that essentially forces the malicious adversary to behave as
an omission adversary. We start in Section 3 with our polynomial commitment
scheme, then show in Section 4 how to use it to get an AVSS, Bingo, that tolerates
adaptive malicious adversaries. Our construction builds on the KZG polynomial
commitment scheme [40], which means relying on a powers-of-tau setup [15]. Our
public parameters are backwards compatible with prior universal setups [41].

Step one: Bingo for omission failures. In this setting, the goal is to share
a degree-2f polynomial among 3f + 1 parties, f of which may suffer omission
failures. Due to asynchrony, the dealer can interact with only 2f + 1 parties,
and since f of them may have omission failures, the remaining f + 1 honest
parties need to enable all honest parties to eventually receive their share of the
secret. Here we use the known technique [1, 2, 39, 43] of having the dealer share
a bivariate polynomial ϕ(X,Y ) of degree at most 2f in X and degree f in Y .
Visually, we think of a matrix of size n×n of the evaluations of ϕ(X,Y ) at roots
of unity {ω1, . . . , ωn}, as shown in Figure 1. As such, we think of the polynomial
ϕ(X,ωi) as the i-th row of the polynomial, which we denote by αi, and the
polynomial ϕ(ωi, Y ) as the i-th column of the polynomial, which we denote by
βi. The dealer then sends each party i the i-th row. Each party can then wait
for 2f + 1 parties to acknowledge receiving their rows before knowing that they
will be able to complete the protocol. This works because once f + 1 honest
parties have their row we are guaranteed that all honest parties will eventually
be able to recover their share in the following way: First, each honest party i
that received a row from the dealer sends each party j the value ϕ(ωj , ωi). Hence
each honest party j receives at least f + 1 points on its j-th column and is able
to reconstruct it. Second, once party j reconstructs its column, it sends each
party i the value ϕ(ωj , ωi). In this way, all honest parties eventually reconstruct
their columns, so each honest party i hears at least 2f + 1 values for row i and
can reconstruct it.

As described, each party needs to send just O(n) words and the protocol
takes a constant number of rounds.
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β1 β2 β3 β4 β5 β6 β7

α1 v11 v12 v13 v14 v15 v16 v17

α2 v21 v22 v23 v24 v25 v26 v27

α3 v31 v32 v33 v34 v35 v36 v37

α4 v41 v42 v43 v44 v45 v46 v47

α5 v51 v52 v53 v54 v55 v56 v57

α6 v61 v62 v63 v64 v65 v66 v67

α7 v71 v72 v73 v74 v75 v76 v77
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α2 v21 v22 v23 v24 v25 v26 v27

α3 v31 v32 v33 v34 v35 v36 v37

α4 v41 v42 v43 v44 v45 v46 v47

α5 v51 v52 v53 v54 v55 v56 v57

α6 v61 v62 v63 v64 v65 v66 v67

α7 v71 v72 v73 v74 v75 v76 v77

Fig. 1. A graphical representation of Bingo’s sharing process showing the two ways in
which party i can obtain their secret polynomial. The row polynomials are denoted
by αi = ϕ(X,ωi) whereas the column polynomials are denoted by βi = ϕ(ωi, Y ). On
the left-hand side, party 2 receives α2 directly from the (honest) dealer. On the right-
hand side, party 2 did not receive their polynomial from the dealer. Instead i receives
evaluations of the column polynomials βj from at least 2f + 1 other parties. Because
βj(ω2) = α2(ωj), this is equivalent to obtaining 2f+1 evaluations of α2, meaning party
2 can obtain α2 by interpolation.

Step two: Bingo for malicious failures. In order to move from omission
failures to malicious failures with adaptive security, we use a perfectly hiding
bivariate polynomial commitment scheme (PCS) that essentially forces the ma-
licious parties to act as if they can only have omission failures.

Our bivariate PCS has five desirable properties: (1) it requires a standard
O(λn) univariate powers-of-tau setup; (2) a commitment has size O(λn); (3)

given a commitment to ϕ, ϕ̂, one can generate commitments to all rows; (4)
given f + 1 evaluations on column j, one can generate evaluation proofs for all
points of column j; and (5) given 2f + 1 evaluations on row i, one can generate
evaluation proofs for all points in row i. Perhaps surprisingly, our PCS commits
to a bivariate polynomial ϕ(X,Y ) of degree f in each column and degree 2f in
each row by simply committing to f + 1 specific rows, where a commitment to
row i is just a KZG univariate polynomial commitment for ϕ(X,ωi) of degree 2f .
It is easy to see that this fulfills the first two properties. For the third property,
we prove that interpolation in the exponent of any f + 1 row commitments
generates commitments to all rows. In order to reduce computation costs, it is
also possible to compute the interpolated coefficients and send them instead of
sending the commitments. Every party can then evaluate commitments in the
exponent instead of interpolating f + 1 commitments and evaluating the rest.

From Bingo to VABA and ADKG. We detail how to use Bingo to obtain a
VABA protocol and an ADKG protocol in Section 5. Using Bingo’s O(n2) word
complexity for packing O(n) secrets allows us to associate with each party a
random value based on secrets from f + 1 parties at a total cost of just O(n3)
words. This random value, when used as a party’s rank, allows us to construct
adaptively secure leader election and proposal election protocols, which in turn
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Scheme Word complexity Batch size CRS setup Max degree Assumptions

Cachin et al. [17] O(λn3) O(1)  2f DL
Backes et al. [6] O(λn2) O(1) # f q-SDH, q-polyDH
Haven [4] O(λn) O(n logn)  2f DL, ROM∗

hbACSS [47] O(λn) O(n2) # f q-SDH
Bingo (this work) O(λn) O(n) # 2f q-SDH, AGM

Table 1. A comparison of AVSS schemes, in terms of: (1) the best amortized word
complexity and (2) the batch size needed to obtain that complexity; (3) the need to rely
on a CRS setup (where  means there is no trusted setup and #means there is); (4) the
maximum degree of the shared polynomial (where the schemes with maximum degree
2f can be used for sharing any degree between f and 2f); and (5) the cryptographic
assumptions needed to prove security. None of the prior schemes have been proved
secure against an adaptive adversary, and all schemes have a constant round complexity.
∗ Haven requires the secret to be distributed uniformly at random.

allow us to build a VABA protocol with O(n3) expected word complexity for
O(n) sized inputs. This construction uses the ability to individually reconstruct
sums of secrets shared by different dealers.

To obtain an ADKG, each party uses Bingo’s O(n2) word complexity for a
high threshold secret; i.e., with a threshold of 2f + 1 (or more generally any
threshold between f +1 and 2f +1). Using the VABA protocol above on inputs
formed from f + 1 completed high-threshold sharings allows us to reach agree-
ment on a common BLS secret key formed from the sum of f +1 high-threshold
secret sharings. Once agreement is reached, we reveal the BLS public key by
using the standard “recovering in the exponent” technique. We prove that the
resulting BLS signature scheme is adaptively secure using the framework of Ba-
cho and Loss [5], relying on the 2f +1-one-more discrete log assumption and the
algebraic group model.

1.2 Related work

Tables 1 and 2 provides a comparison with the most relevant prior AVSS and
ADKG schemes. Cachin et al. [17] study asynchronous verifiable secret shar-
ing (AVSS) in the computational setting. The earlier works of Feldman and
Micali [30] and Canetti and Rabin [20] study AVSS in the private channel set-
ting. Backes, Datta, and Kate [6] provide the first construction with asymptoti-
cally optimal O(λn2) word complexity for AVSS. They use the seminal pairing-
based polynomial commitment scheme due to Kate, Zaverucha, and Goldberg
(KZG) [40]. Compared to Backes et al., we provide the same asymptotically
optimal O(λn2) word complexity with an O(n) improvement in the size of the
secret and a scheme that is proven to be adaptively secure.

AlHaddad, Varia, and Zhang [4] obtain a high-threshold AVSS, Haven, for
uniformly random secrets with O(n2) word complexity. Moreover, their scheme
can be instantiated with a setup-free polynomial commitment scheme [10, 11, 14,
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Scheme Word complexity Rounds CRS setup Max threshold Assumptions

Kate et al. [38] O(λn4) O(n)  f DL, ROM
Kokoris-Kogias et al. [42] O(λn4) O(n)  2f DL

Abraham et al. [3] O(λn3) O(1)  f SXDH, BDH, ROM†

Das et al. [29] O(λn3) O(logn)  2f DDH, ROM
Groth and Shoup [36] O(λn3) O(1)  f DL, ROM
This work O(λn3) O(1) # 2f q-SDH⋄

Table 2. A comparison of ADKG schemes, in terms of: (1) the best word complexity;
(2) the expected number of rounds; (3) the need to rely on a CRS setup (where  means
there is no trusted setup and # means there is); (4) the maximum reconstruction
threshold; and (5) the cryptographic assumptions needed to prove security. None of
the prior schemes have been proved secure against an adaptive adversary.
† Abraham et al. require the secret key to be a group element.
⋄ We prove that our protocol satisfies oracle-aided simulatability [5], as opposed to the
more general notions of secrecy [34] or key expressability [37]. To some extent, this can
be thought of as introducing a reliance on the one-more discrete logarithm (OMDL)
assumption.

16] at a O(n2 log n) word complexity. Because our construction enables packed
secret sharing and allows for arbitrary secrets, we can share n arbitrary secrets
with the same word complexity (O(n2)) that it takes AlHaddad et al. to share
one random secret.

Yurek et al. [47] provide three variant protocols called hbACSS, which are
proved secure against a static adversary. These protocols achieve batching rather
than packing (because they use an f -by-f polynomial), but for each shared secret
they are (quasi)linear in both computation and communication overhead in an
amortized sense. While AVSS protocols with efficient batching allow for sharing
many secrets more efficiently than sharing them separately, packed secret sharing
protocols [31] do so by sharing them on the same high-degree polynomial. These
sharings can then be used where high-degree polynomials are needed (e.g. in
high-degree DKGs), whereas simple batching does not suffice for these purposes.
Because Bingo is packed (due to its use of a 2f -by-f polynomial) it achieves
linear overheads after sharing O(n) secrets (which we rely on in our leader elec-
tion protocol), whereas the hbACSS protocols achieve the same overheads after
sharing O(n2) secrets. A construction using a 2f -by-f bivariate polynomial has
previously been suggested in [25].

There has been considerable recent interest in practical ADKG and the build-
ing blocks needed to support it. Kokoris-Kogias, Malkhi, and Spiegelman [42]
obtain a high threshold ADKG with O(n4) communication complexity and O(n)
rounds. Gurkan et al. suggest an aggregatable publicly verifiable secret shar-
ing (PVSS) scheme [37] that builds upon the SCRAPE PVSS of Cascudo and
David [22]. When combined with the consensus protocol of Abraham et al. [3],
the result of Gurkan et al. yields a high-threshold ADKG with O(n3 log n) com-
munication complexity and O(1) expected time that is secure against static
adversaries. Their secret key is a group element, however, which makes it in-

6



compatible with commonly used threshold cryptography schemes, such as BLS,
that require field elements as secrets. Cascudo and David [21] introduce Alba-
tross, which uses packed secret sharing to build a randomness beacon that shares
O(n2) random values. Albatross also uses the SCRAPE PVSS as a backend and
thus cannot be used to share a field element (and has a static security proof).

Das, Xiang, and Ren [28] provide a reliable broadcast protocol that, among
other improvements, removes the logarithmic factor from the consensus protocol
of Abraham et al. [3] to get O(n3) communication complexity and O(1) expected
time. Das et al. [29] provide a high-threshold DKG that has a field element as
a secret key, O(n3) word complexity, and is secure against a static adversary.
In the optimistic case it runs in O(1) rounds, but in the face of a Byzantine
attacker it requires an expected O(log(n)) rounds.

Groth and Shoup [36] provide a DKG that has O(n3) word complexity and
avoids a trusted setup. There is a rigorous security analysis only for static corrup-
tions, however, and their scheme doesn’t support high-threshold reconstruction.
In terms of their underlying AVSS, it has an amortized linear cost with a batch
size of n log n. We get the same amortized cost for a batch size of n, which we
need in our weak leader election protocol (Appendix C).

2 Definitions

In this section we start by defining basic notation, and then defining polynomial
commitment schemes and reliable broadcast as basic building blocks to be used
in our constructions. Following that, we discuss the way we model interactive
protocols in order to finally define packed asynchronous verifiable secret sharing.

2.1 Preliminaries

For a finite set S, we denote by |S| its size and by x
$←− S the process of sampling

a member uniformly from S and assigning it to x. Further, λ ∈ N denotes the
security parameter and 1λ denotes its unary representation. For two integers
i ≤ j, we define [i, j] = {i, . . . , j}, and for every n ∈ N we define [n] = {1, . . . , n}.
We define ω1, . . . , ωn to be n different roots of unity of order n + f . In a slight
abuse of notation, we define ω0 to be 0 and ω−f , . . . , ω−1 to be the remaining
f roots of unity of order n + f . PPT stands for probabilistic polynomial time.
By y ← A(x1, . . . , xn) we denote running algorithm A on inputs x1, . . . , xn

and assigning its output to y, and by y
$←− A(x1, . . . , xn) we denote running

A(x1, . . . , xn;R) for a uniformly random tape R. Adversaries are modeled as
randomized algorithms. We use code-based games in our security definitions [8].
A game Gsec

A (λ), played with respect to a security notion sec and adversary A, has
a main procedure whose output is the output of the game. Pr[Gsec

A (λ)] denotes
the probability that this output is equal to 1.

Our constructions rely on the discrete logarithm assumption (dlog) which
says that it is hard to output x given gx, where g is a generator of a group G of
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prime order p and x
$←− Fp. We also rely on the q-strong Diffie-Hellman assump-

tion (q-sdh) [12], which says that it is hard to output a pair (c, g1/(x+c)) given

(g, gx, gx
2

, . . . , gx
q

, ĝ, ĝx) ∈ Gq+1
1 × G2

2, where G1 and G2 are groups of prime
order p, generated by g and ĝ, and form a bilinear group, q is an integer, and

x
$←− Fp. Finally, our DKG application relies on the k-one-more discrete logarithm

(omdl) assumption [7], which says that it is hard to output (x1, . . . , xk) ∈ Fkp
given (g, gx1 , . . . , gxk) ∈ Gk+1, where g is a generator of a group G of prime order

p and x1, . . . , xk
$←− Fp, and at most k − 1 queries to a discrete log oracle DL

that on input X outputs logg(X). We use bp to denote the parameters defining
a bilinear group with extra generators; i.e., bp = (g, ĝ ∈ G1, h ∈ G2,GT , e).

Some properties of our constructions are proved secure in the algebraic group
model (AGM) [32]. In the AGM, whenever an adversary outputs a group element
it must output the algebraic representation of that element relative to all the
group elements it has seen thus far; i.e., if it has seen X1, . . . , Xm then upon
outputting a new element Y it must output a1, . . . , am such that Y =

∏
iX

ai
i .

2.2 Polynomial commitments

We define a polynomial commitment scheme (PCS) as consisting of the following
algorithms:

– srs
$←− Setup(1λ) takes as input a security parameter and outputs a commit-

ment key srs.

– C
$←− Commit(srs, ϕ) takes as input the commitment key and a polynomial ϕ

and outputs a commitment C. We often specify the randomness ϕ̂ explicitly
using the notation C ← Commit(srs, ϕ, ϕ̂).

– m, m̂, π ← Eval(srs, ϕ, ϕ̂, ω) takes as input a commitment key, a pair of poly-

nomials, and a point on which to evaluate. It returns m = ϕ(ω), m̂ = ϕ̂(ω)
and a proof π that m, m̂ are consistent with ω.

– 0/1← Verify(srs,C, ω,m, m̂, π) takes as input a commitment key, a commit-
ment, an opening point, a pair of openings, and a proof π. It returns 1 if it
is convinced that (m, m̂) is a valid opening of C at ω and 0 otherwise.

In what follows, we often omit the commitment key srs as an explicit in-
put to the other algorithms. Following Kate et al. [40], we require that a PCS

satisfies correctness, meaning that Verify(Commit(ϕ, ϕ̂), ω,Eval(ϕ, ϕ̂, ω)) = 1 and
both polynomial binding and evaluation binding. These say, respectively, that
an adversary cannot open a single commitment to two different values and that
an adversary cannot output two valid but incompatible evaluations of the same
pair of polynomials, as represented by a single commitment.

Definition 1 (Polynomial binding). [40] Consider a game Gpoly-binding
A (λ)

in which an adversary A takes 1λ as input and outputs the tuple (ϕ1, ϕ̂1, ϕ2, ϕ̂2),

and wins if (1) Commit(ϕ1, ϕ̂1) = Commit(ϕ2, ϕ̂2) and (2) (ϕ1, ϕ̂1) ̸= (ϕ2, ϕ̂2).
We say the PCS satisfies polynomial binding if for all PPT adversaries A there
exists a negligible function ν(·) such that Pr[Gpoly-binding

A (λ)] < ν(λ).
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Definition 2 (Evaluation binding). [40] Consider a game Geval-binding
A (λ) in

which an adversary A takes 1λ as input and outputs (C, ω,m1, m̂1, π1,m2, m̂2,
π2), and wins if (1) Verify(C, ω,mi, m̂i, πi) = 1 for i ∈ {1, 2} and (2) (m1, m̂1) ̸=
(m2, m̂2). We say the PCS satisfies evaluation binding if for all PPT adversaries

A there exists a negligible function ν(·) such that Pr[Geval-binding
A (λ)] < ν(λ).

We define another important property for a PCS, interpolation binding, which
says that given enough evaluations of a committed pair of polynomials, the inter-
polated polynomials obtained from these evaluations must be the ones contained
inside the commitment. For this we use the notation p ← Interpolate({ωi, yi}i)
to denote using Lagrange interpolation to obtain a degree-d polynomial given
d+ 1 evaluation points and their corresponding evaluations.

Definition 3 (Interpolation binding). Consider the game Gint-binding
A (1λ)

defined as follows

main(1λ, d)

srs
$←− Setup(1λ, d)

(C, {(ωi,mi, m̂i, πi)}i∈[d+1])
$←− A(srs)

p(X)← Interpolate({(ωimi)}i∈[d+1])
p̂(X)← Interpolate({(ωi, m̂i)}i∈[d+1])
check ωi ̸= ωj for all i ̸= j
check Verify(srs,C, ωi,mi, m̂i, πi) = 1 for all i ∈ [d+ 1]
check C ̸= Commit(srs, p(X); p̂(X))
if all checks pass return 1, else return 0

We say the PCS satisfies interpolation binding if for all PPT adversaries A
there exists a negligible function ν(·) such that Pr[Gint-binding

A (1λ)] < ν(λ).

In our construction of Bingo, we do not use the hiding property defined by
Kate et al. as it did not fit our use case. We instead provide a new hiding defini-
tion, capturing the ability of a simulator to both open commitments and provide
evaluations without knowledge of the underlying polynomials. As this definition
is somewhat specific to our usage of KZG within Bingo, and in particular to the
way in which it is embedded in a bivariate polynomial commitment (as described
below), it can be found in Appendix A.3.

In a bivariate PCS, ϕ is a polynomial in indeterminates X and Y . This means
we consider an additional algorithm:

– A← PartialEval(srs,C, Vn) takes as input the commitment key, the bivariate
commitment, and a set of partial evaluation points Vn of size n. It outputs
n partial evaluations, consisting of commitments to univariate polynomials
α(X)← ϕ(X, v) and α̂(X)← ϕ̂(X, v) for each v ∈ Vn.

To prove evaluations of ϕ and ϕ̂, we can use these univariate polynomials
as input to Eval, and their commitments as input to Verify (which must now
take in two evaluation points ω and ωv rather than a single one). In terms of
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correctness, we define an algorithm A ← CPE(ϕ, ϕ̂, Vn) that first runs Commit

on ϕ and ϕ̂ and then runs PartialEval on its output C and Vn. We then require
that Verify(CPE(ϕ, ϕ̂, Vn), (ω, v),Eval(ϕ(X, v), ϕ̂(X, v), ω)) = 1 for all v ∈ Vn.

2.3 Reliable broadcast

A reliable broadcast is an asynchronous protocol with a designated sender. The
sender has some input value m from a known domain M and each party may
output a value inM. A reliable broadcast has the following properties assuming
all nonfaulty (i.e., uncorrupted) parties participate in the protocol:

– Validity. If the sender is nonfaulty, then every nonfaulty party that com-
pletes the protocol outputs the sender’s input value m.

– Agreement. The values output by any two nonfaulty parties are the same.

– Termination. If the dealer is nonfaulty, then all nonfaulty parties com-
plete the protocol and output a value. Furthermore, if some nonfaulty party
completes the protocol, every nonfaulty party completes the protocol.

2.4 Packed asynchronous verifiable secret sharing (PAVSS)

We define a packed AVSS using two interactive protocols that take place between
n parties: Share and Reconstruct. In Share, the designated dealer receives as input
a set of secrets s0, . . . , sm from a finite field F and all other parties receive no
input. None of the parties have any output at the end of Share, but they do
update their local state. Because the AVSS is packed, there are m + 1 possible
invocations of Reconstruct, one for each index k. Each party thus provides k as
input to the protocol, and has as output a field element vk ∈ F, which represents
their local view of the k-th secret shared by the dealer.

We formally define the environment for a PAVSS in Appendix B, in terms of
capturing the ways in which the adversary can control the network (i.e., when
honest parties receive messages) and the other actions the adversary can take. We
then formally define three security properties for a PAVSS, which we informally
summarize here.

Our first definition, termination, sets the conditions under which nonfaulty
parties can be guaranteed to complete Share and Reconstruct. Briefly, it says
that (1) if the dealer is nonfaulty then all nonfaulty parties will complete Share;
(2) if one nonfaulty party completes Share then all nonfaulty parties will; and
(3) if all nonfaulty parties complete Share and invoke Reconstruct(k) then they
all will complete Reconstruct(k). Our next definition, correctness, captures the
requirement that all nonfaulty parties who complete Reconstruct(k) should agree
on the same secret, which in turn should be the same as the one used by the dealer
(if it was also nonfaulty). Our final definition, secrecy, captures the requirement
that an adversary should not be able to learn anything about the k-th secret
until the point at which some nonfaulty party invokes Reconstruct(k).

10



KZG.Setup(bp, d1)

τ, x
$←− F

ĝ ← gx

srs← (bp, h, hτ , {gτ
i

, ĝτ
i

}d1i=0)
return srs

KZG.Commit(srs, α(X); α̂(X))

C ← gα(τ)ĝα(τ)

return C

KZG.Eval(srs, α(X), α̂(X), ωi)

m← α(ωi)
m̂← α̂(ωi)
q(X)← (α(X)−m)/(X − ωi)
q̂(X)← (α̂(X)− m̂)/(X − ωi)

π ← gq(τ)ĝq̂(τ)

return (m, m̂, π)

KZG.Verify(srs,C, ωi,m, m̂, π)

if e(Cg−mĝ−m̂, h) = e(π, hτ−ωi) return 1
else return 0

Fig. 2. The hiding univariate KZG polynomial commitment scheme.

Our specific PAVSS scheme, Bingo, is also complete in the sense that every
party has a share of each of the secrets (this can be seen in the proof of Theo-
rem 3, in which every party guarantees it has a share before terminating). Be-
yond the above three properties, this thus makes Bingo a packed asynchronous
complete secret sharing (ACSS) scheme [43].

3 A Bivariate Polynomial Commitment Scheme

3.1 Construction

Our construction for a bivariate polynomial commitment scheme, given in Fig-
ure 3, builds heavily on top of the univariate PCS due to Kate et al. [40]. As
such, we first present this construction in Figure 2.

In both commitment schemes, the setup outputs universal powers-of-tau pa-
rameters [15], meaning they are backwards compatible with prior trusted se-
tups [41]. Let ϕ(X,Y ) be a bivariate polynomial with degree d1 in X and degree
d2 in Y . A commitment to ϕ(X,Y ) first decomposes ϕ(X,Y ) into d2 + 1 uni-

variate polynomials ϕi(X) such that ϕ(X,Y ) =
∑d2
i=0 ϕi(X)Y i. The randomness

ϕ̂(X,Y ) is decomposed in the same manner. Then each of the ϕi(X) are com-

mitted to using KZG.Commit with randomness ϕ̂i(X). A commitment C such
that |C| = d2 has maximum degree d2 in Y and d1 in X.

The partial evaluation algorithm takes as input a commitment C and a set of
distinct points Vn of size n. It then runs a discrete Fourier transform (DFT) that
maps a polynomial to a set of evaluations. Because the DFT/iDFT algorithm is
a linear transformation, it can be applied to (homomorphic) group exponents in
the exact same way as it is run for field elements, without having to know the
discrete logarithms. To avoid confusion, we nevertheless denote the algorithms
acting on field elements as DFT and iDFT and the algorithms acting on group

11



Setup(bp, d1)

return KZG.Setup(bp, d1)

PartialEval(srs,C, Vn)

A← DFTExp(C, Vn)
return A

Eval(srs, α(X), α̂(X), ωi)

return KZG.Eval(srs, α(X), α̂(X), ωi)

Commit(srs, ϕ(X,Y ); ϕ̂(X,Y ))∑d2
i=0 ϕi(X)Y i ← parse(ϕ(X,Y ))∑d2
i=0 ϕ̂i(X)Y i ← parse(ϕ̂(X,Y ))

C ← {gϕi(τ)ĝϕ̂i(τ)}d2i=0

return C

Verify(srs,A, (i, j),m, m̂, π)

return KZG.Verify(srs,Aj , ωi,m, m̂, π)

GetProofs({(wi, yi, ŷi, πi)}i∈[f+1], Vn)

β(X)← Interpolate
(
{(wi, yi)}i∈[d1+1]

)
β̂(X)← Interpolate

(
{(wi, ŷi)}i∈[d1+1]

)
P ← InterpolateExp

(
{(wi, πi)}i∈[d1+1]

)
z1, . . . , zn ← DFT(β(X), Vn)

ẑ1, . . . , ẑn ← DFT(β̂(X), Vn)
π̄1, . . . , π̄n ← DFTExp (P , Vn)
return {(zi, ẑi, π̄n)}i∈[n]

Fig. 3. Our bivariate PCS, built on top of the KZG univariate PCS. The set Vn consists
of n roots of unity, i.e., values ωi such that ωn

i = 1.

elements as DFTExp and iDFTExp. PartialEval thus runs and outputs

DFTExp : ((ga0 , . . . , gad1 ),Fn) 7→ {g
∑d1

j=0 ajω
j
i }n−1
i=0 .

If Vn is a multiplicative subgroup of F containing roots of unity, then DFT and
DFTExp run in time n log(n). Note that it is possible to replace the DFTs with
simple Lagrange interpolation in any field without using roots of unity, but DFTs
are used to improve efficiency. IfW ⊂ Vn is a subset of roots of unity, then inter-
polation overW runs in time n log2(n) [33]. In addition to the interpolation algo-
rithm p ← Interpolate({(ωi, yi)}), we denote by P ← InterpolateExp({(ωi, Yi)})
the algorithm that performs these operations in the exponent (i.e., by acting
on group elements). We also denote by Y ← EvalExp(ω, P ) the algorithm that
performs polynomial evaluation in the exponent.

To verify that a commitment opens at (ωi, ωj) to (m, m̂), we take as input the

partial evaluation A over the set Vn where ωj ∈ Vn. Then Aj = gϕ(τ,ωj)ĝϕ̂(τ,ωj)

is a KZG commitment to ϕ(X,ωj) under randomness ϕ̂(X,ωj). The prover can
thus provide a KZG opening proof that Aj opens at ωi to m under randomness
m̂ (i.e., the output of KZG.Eval), which the verifier can check using KZG.Verify.

The security of our bivariate PCS follows directly from the security of the
KZG univariate PCS, in terms of polynomial binding, evaluation binding, and
hiding, which follow in turn from the q-sdh assumption. We next prove, in the
algebraic group model [32], that the underlying univariate PCS also satisfies
interpolation binding. A proof of this lemma can be found in Appendix A.1.
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Lemma 1. If the dlog and q-sdh assumptions hold, then interpolation binding
(Definition 3) holds for the KZG PCS.

3.2 Commitment and proof interpolation

For any bivariate polynomial ϕ(X,Y ) of degree d1 in X we have that the
points ϕ(ωv1 , ωj), . . . , ϕ(ωvd1+1

, ωj) suffice to interpolate the partial evaluation
ϕ(X,ωj). A special property about our bivariate PCS is that, given a commit-
ment C and d1 + 1 openings (with respect to the same ωj), parties can also
compute the opening proofs for C at (x, ωj) for any x ∈ F. This will be useful
in Bingo when the dealer is dishonest.

In Figure 3 we describe an additional algorithm {(zi, ẑi, π̄i)} ← GetProofs(
{(vi, yi, ŷi, πi)}, Vn) that takes as input d1 + 1 opening points, their evaluations
and associated proofs, and a set Vn, and outputs n evaluations and their associ-
ated proofs over the bigger set Vn. In Lemma 2 we prove the correctness of this
algorithm, namely that if every opening (yi, ŷi, πi) verifies with respect to the
commitment C and the indices (j, wi), then every output (zk, ẑk, π̄k) also verifies
with respect to (C, k, j). A proof of this lemma can be found in Appendix A.2.

Lemma 2. Let C be a bivariate polynomial commitment, let A be such that
A← PartialEval(C, Vn), let vi be indices such that wi = ωvi for every i ∈ [d1+1],
and let {(vi, yi, ŷi, πi)}i∈[d1+1] be values such that VerifyEval(A, (j, vi), yi, ŷi, πi) =
1 for all i ∈ [d1 + 1]. If

{(zi, ẑi, π̄i)}i∈[n] ← GetProofs({(wi, yi, ŷi, πi)}i∈[d1+1], Vn)

then ∀k ∈ [n], VerifyEval(A, (j, k), βj(ωk), β̂j(ωk), π̄k) = 1.

Below we prove an additional useful property of our bivariate PCS, namely
that by performing interpolation in the exponent on the partial (univariate)
commitments we can recover the bivariate commitment.

Lemma 3. Let v1, ..., vd2+1 ∈ [n] be distinct values, and let αv1(X), . . . , αvf+1
(X)

and α̂v1(X), . . . , α̂vf+1
(X) be polynomials of degree no greater than d1. Define

ϕ(X,Y ), ϕ̂(X,Y ) to be the unique bivariate polynomials of degree d1 in X and d2
in Y such that ∀i ∈ [d1+1] αvi(X) = ϕ(X,ωvi), α̂vi(X) = ϕ̂(X,ωvi). If ∀i ∈ [d2+
1] Di = Commit(αvi(X); α̂vi(X)) and C = InterpolateExp({(ωvi , Di)}i∈[f+1]),

then C = Commit(srs, ϕ(X,Y ); ϕ̂(X,Y )).

Proof. First note that ϕ(τ, Y ) = Interpolate({(ωvi , ϕ(τ, ωvi)}i∈[f+1]). By con-

struction Di = Commit(srs, αvi ; α̂vi) = gαvi
(τ)ĝα̂vi

(τ) = gϕ(τ,ωvi
)+xϕ̂(τ,ωvi

), where
ĝ = gx. Thus

(gϕ0(τ)+xϕ̂0(τ), . . . , gϕf (τ)+xϕ̂f (τ)) = InterpolateExp
(
{(ωvi , Di)}i∈[f+1]

)
.

This shows the lemma because

(gϕ0(τ)+xϕ̂0(τ), . . . , gϕf (τ)+xϕ̂f (τ)) = Commit(srs, ϕ(X,Y ); ϕ̂(X,Y )).
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4 Bingo: Packed Asynchronous Verifiable Secret Sharing

In this section we present Bingo, our packed AVSS scheme. We discuss its design
in Section 4.1 and its security in Section 4.2.

4.1 Design

Bingo consists of a sharing protocol BingoShare (Algorithm 2), and a reconstruc-
tion protocol BingoReconstruct (Algorithm 3). Additional reconstruction proto-
cols for reconstructing sums of secrets and batch reconstructing are presented
in Algorithm 4 and Algorithm 5, respectively. Moreover, BingoShare uses a sub-
protocol BingoDeal (Algorithm 1), that describes the steps performed by the
dealer. In more detail:

BingoDeal. The dealer receives secrets sk ∈ F for k ∈ [0,m] as inputs. It then

uniformly samples two bivariate polynomials ϕ, ϕ̂ over F of degrees 2f in X
and f in Y such that ϕ(ω−k, ω0) = sk for k ∈ [0,m]. This can be done by
uniformly sampling values for ϕ(ωi, ω0) for i ∈ [f ] and interpolating the resulting
ϕ(X,ω0). Following that, the dealer simply uniformly samples ϕ(X,ωi) for i ∈ [f ]
by directly sampling their coefficients, and interpolating the resulting f + 1
polynomials into a bivariate polynomial ϕ. The dealer then computes the row
projections αi(X) = ϕ(X,ωi) and α̂i(X) = ϕ̂(X,ωi), and the column projections

βi(Y ) = ϕ(ωi, Y ), and β̂i(Y ) = ϕ̂(ωi, Y ) for all i ∈ [n]. Looking ahead, the
asymmetric degrees of the polynomials (α of degree 2f and β of degree f) help
parties know that if they complete the BingoShare protocol, every other party
will eventually do so as well. By definition, αi(ωj) = βj(ωi) and α̂i(ωj) = β̂j(ωi)
for any i, j ∈ [n]. The dealer then broadcasts a commitment to this polynomial
(formed using our bivariate PCS), using reliable broadcast, and privately sends
every party i ∈ [n] its pair of row polynomials αi and α̂i.

Algorithm 1 BingoDeal(s0, . . . , sm)

1: uniformly sample ϕ(X,Y ) with degree 2f in X and f in Y s.t. ϕ(ω−k, ω0) = sk ∀k ∈
[0,m]

2: uniformly sample ϕ̂(X,Y ) with degree 2f in X and f in Y
3: CM← Commit(ϕ; ϕ̂)
4: for all i ∈ [n] do
5: αi(X)← ϕ(X,ωi), α̂i(X)← ϕ̂(X,ωi)

6: (reliably) broadcast ⟨“commits”,CM⟩
7: send ⟨“polynomials”, αi, α̂i⟩ to every i ∈ [n]

BingoShare. The goal of BingoShare (Algorithm 2) is for each party i to learn
their row polynomials αi and α̂i. As depicted in Figure 1, there are two ways this
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can happen. First, if the dealer is honest, they send the polynomials in BingoDeal
and party i learns them directly (lines 7-10).

If the dealer is corrupt, however, party i may never receive a “polynomials”
message. In this case other nonfaulty parties can help i as follows. First, they
use their α polynomials to help other parties learn their β column polynomials
(lines 15-23), taking advantage of the fact that αj(ωℓ) = βℓ(ωj) (we omit the

α̂ and β̂ polynomials in this description, but the process for them is identical).
In other words, if party ℓ is given αj(ωℓ) by enough other parties j then it
can use GetProofs to compute evaluations and proofs for all other parties, as
shown in line 21. Importantly, while party ℓ could interpolate βℓ and compute
the evaluations directly, it would be unable to form the proofs using Eval as the
proof for each party j needs to verify against cmj (i.e., a commitment to αj and
not βℓ).

In the previous step, each party ℓ thus sends evaluations βℓ(ωi) to each party
i. After receiving enough of these polynomials, party i can then interpolate αi (in
line 31). Before completing the protocol, parties make sure that enough parties
have received their row and column polynomials and are helping everybody
reach the end of the protocol. This is done by parties sending “done” messages
after having received their row and column polynomial, and terminating only
after n − f such messages have been received, guaranteeing that at least f + 1
nonfaulty parties shared their information. Note that if one party receives its row
and column polynomials, it does not know that all parties will eventually receive
enough information to interpolate their polynomials as well. Therefore, parties
have to wait to actually receive n− f “done” messages before terminating, even
if they received enough information to send their own “done” message.

BingoReconstruct. Once parties have finished the sharing phase, they can start
recovering the shared secrets for all k ∈ [0,m]. The execution of BingoReconstruct
may not be required in all cases, however, as it depends on the concrete applica-
tion in which Bingo is used. To start recovery of the secret at index k, each party
i evaluates its polynomials αi and α̂i at position ω−k and creates a proof πα,i,−k
showing that the evaluations are correct with respect to the commitment cmi.
Afterwards, party i sends a “rec” message with the evaluations αi(ω−k), α̂i(ω−k)
and the proof πα,i,−k to all other parties j. Once party i receives its first “rec”
message from party j, it verifies that the included shares are correct and, if so,
stores the tuple (j, αj(ω−k)) in a set sharesi,k. Finally, once party i has received
f + 1 different correct shares for the shared secret at index k, it interpolates
sharesi,k to a polynomial β−k, outputs β−k(ω0) as the secret, and terminates.
Note that the points αj(ω−k) should equal ϕ(ω−k, ωj). Interpolating f + 1 such
points (with different values for j) yields the polynomial β−k(Y ) = ϕ(ω−k, Y ),
so β−k(ω0) = ϕ(ω−k, ω0) = sk as required.

4.2 Security

The security of Bingo scheme is captured in the following main theorem.
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Algorithm 2 BingoSharei()

1: if i is the dealer with input s0, . . . , sm then
2: BingoDeal(s0, . . . , sm)

3: αi ← ⊥, α̂i ← ⊥, cm← ∅
4: pointsα,i ← ∅, pointsα̂,i ← ∅, proofsβ,i ← ∅
5: upon receiving a ⟨“commits”,CM⟩ broadcast from the dealer, do
6: cm← PartialEval(CM, {ω1, . . . , ωn}) ▷ cm = (cm1, . . . , cmn)

7: upon receiving the first ⟨“polynomials”, α′
i, α̂

′
i⟩ message from the dealer, do

8: upon cm ̸= ∅, do
9: if αi = ⊥ and KZG.Commit(α′

i, α̂
′
i) = cmi then

10: αi ← α′
i, α̂i ← α̂′

i ▷ save αi, α̂i if consistent with cm

11: upon αi ̸= ⊥ and cmi ̸= ⊥, do ▷ upon having row, help others with columns
12: for all j ∈ [n] do
13: αi(ωj), α̂i(ωj), πα,i,j ← Eval(αi, α̂i, ωj)
14: send ⟨“row”, αi(ωj), α̂i(ωj), πα,i,j⟩ to party j

15: upon receiving the first ⟨“row”, αj(ωi), α̂j(ωi), πα,j,i⟩ message from j, do
16: upon cmj ̸= ⊥, do ▷ collect points and interpolate column
17: if

∣∣proofsβ,i∣∣ < f + 1 then ▷ no need to collect points if interpolated
18: if Verify(cm, (i, j), αj(ωi), α̂j(ωi), πα,j,i) = 1 then
19: proofsβ,i ← proofsβ,i ∪ {(ωj , αj(ωi), α̂j(ωi), πα,j,i)}
20: if

∣∣proofsβ,i∣∣ = f + 1 then ▷ enough to interpolate column proofs
21: (y1, ŷ1, π1), . . . , (yn, ŷn, πn)← GetProofs(proofsβ,i, {ω1, . . . , ωn})
22: for all j ∈ [n] do
23: send ⟨“column”, yj , ŷj , πn⟩ to party j ▷ help others with rows

24: upon receiving the first ⟨“column”, βj(ωi), β̂j(ωi), πβ,j,i⟩ message from j, do
25: upon cm ̸= ∅, do ▷ collect points and interpolate row
26: if αi = ⊥ then ▷ no need to collect points if already have αi

27: if Verify(cm, (j, i), βj(ωi), β̂j(ωi), πβ,j,i) = 1 then
28: pointsα,i ← pointsα,i ∪ {(ωj , βj(ωi))}
29: pointsα̂,i ← pointsα̂,i ∪ {(ωj , β̂j(ωi))}
30: if

∣∣pointsα,i

∣∣ = 2f + 1 then ▷ enough to interpolate row
31: αi ← Interpolate(pointsα,i), α̂i ← Interpolate(pointsα̂,i)

32: upon αi ̸= ⊥, α̂ ̸= ⊥ and
∣∣proofsβ,i∣∣ = f + 1, do

33: send ⟨“done”⟩ to all parties

34: upon receiving ⟨“done”⟩ messages from n− f parties, do
35: upon αi ̸= ⊥, α̂i ̸= ⊥, and

∣∣proofsβ,i∣∣ = f + 1, do
36: terminate
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Algorithm 3 BingoReconstructi(k) for k ∈ [0,m]

1: sharesi,k = ∅
2: αi(ω−k), α̂i(ω−k), πα,i,−k ← Eval(αi, α̂i, ω−k)
3: send ⟨“rec”, k, αi(ω−k), α̂i(ω−k), πα,i,−k⟩ to all parties
4: upon receiving the first ⟨“rec”, k, αj(ω−k), α̂j(ω−k), πα,j,−k⟩ message from j, do
5: if Verify(cm, (−k, j), αj(ω−k), α̂j(ω−k), πα,j,−k) = 1 then
6: sharesi,k ← sharesi,k ∪ {(ωj , αj(ω−k))} ▷ αi(ω−k) = ϕ(ω−k, ωi) = β−k(ωi)
7: if |sharesi,k| = f + 1 then ▷ enough to interpolate −k’th column
8: β−k ← Interpolate(sharesi,k)
9: output β−k(ω0) and terminate

Theorem 1. If the underlying commitment scheme is secure, then the pair
(BingoShare,BingoReconstruct), as specified in Algorithms 2 and 3, is an f -
resilient packed AVSS for m+ 1 secrets, for any m ≤ f < n

3 .

To prove this, we argue for correctness, termination, and secrecy in turn. To
prove correctness and termination, we first prove a series of lemmas that consider
the relationship between the committed polynomials represented by CM and
the polynomials αi, α̂i, βi, β̂i held by a nonfaulty party i at the point at which
they complete Share. In all of the following lemmas we consider many instances
of the BingoShare and BingoReconstruct protocols running simultaneously with
both faulty and nonfaulty dealers. Each of the lemmas focuses on one of those
instances and argues that certain values are consistent within that one instance.
We first show that the existence of an extractor that can, for both faulty and
nonfaulty dealers, output polynomials ϕ and ϕ̂ such that CM = Commit(ϕ; ϕ̂).

The following lemma demonstrates the existence of an extractor that outputs
polynomials consistent with the dealers broadcast commitment CM whenever a
single nonfaulty party completes BingoShare. Where the polynomial commitment
scheme is binding, this ensures that the output of BingoReconstruct is fully de-
termined once an honest party completes. A proof of this lemma can be found
in Appendix B.3.

Lemma 4. Assume some nonfaulty party completed the BingoShare protocol
with respect to the commitment CM broadcast from the dealer. Suppose the (uni-
variate) polynomial commitment scheme satisfies interpolation binding. There
exists an efficient extractor Ext that receives the views of the nonfaulty parties
and outputs a pair of bivariate polynomials ϕ(X,Y ) and ϕ̂(X,Y ) of degree 2f in

X and f in Y such that CM = Commit(ϕ(X,Y ); ϕ̂(X,Y )). Furthermore, if the
dealer is nonfaulty, then ∀k ∈ [0,m] sk = ϕ(ω−k, ω0).

Corollary 1. Assume some nonfaulty party completed the BingoShare protocol,
that the extractor from Lemma 4 returns ϕ(X,Y ), ϕ̂(X,Y ), and the PCS satisfies
polynomial binding. If some nonfaulty party i updates αi(X), α̂i(X) to values

other than ⊥, then αi(X) = ϕ(X,ωi) and α̂i(X) = ϕ̂(X,ωi).

Proof. Suppose a nonfaulty party updates αi(X), α̂i(X) and an extractor out-

puts ϕ(X,Y ) and ϕ̂(X,Y ) such that CM = Commit(ϕ(X,Y ); ϕ̂(X,Y )). By the
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correctness of PartialEval we have that cmi = Commit(ϕ(X,ωi); ϕ̂(X,ωi)). If

(αi(X), α̂i(X)) ̸= (ϕ(X,ωi), ϕ̂(X,ωi)), then the adversary could simulate all
nonfaulty parties, find two openings of cmi and thus break polynomial binding.

Now assume that some nonfaulty party completes the protocol and define
ϕ(X,Y ), ϕ̂(X,Y ) to be extracted polynomials. The next lemma demonstrates
that any point accepted by any nonfaulty party is consistent with ϕ(X,Y ),

ϕ̂(X,Y ). A proof of this lemma can be found in Appendix B.4.

Lemma 5. If (1) the dealer broadcasts a ⟨“commits”,CM⟩ message and it gets
received by a nonfaulty party, and (2) the underlying PCS satisfies evaluation
binding and interpolation binding, and (3) some nonfaulty party completes the

BingoShare protocol at time t, then define ϕ(X,Y ), ϕ̂(X,Y )← Ext(viewt) for Ext
as in Lemma 4. Then the following properties hold:

– if a nonfaulty party i adds (j, yj) and (j, ŷj) to pointsα,i and pointsα̂,i respec-

tively in lines 28 and 29, then yj = ϕ(ωj , ωi) and ŷj = ϕ̂(ωj , ωi), and
– if a nonfaulty party i adds (j, yj , ŷj , πj) to proofsβ,i in line 19, then yj =

ϕ(ωi, ωj) and ŷj = ϕ̂(ωi, ωj).

Proofs of the following theorems can all be found in Appendix B. For the
correctness property, we start by extracting ϕ, ϕ̂ at the time the first nonfaulty
party completes BingoShare and define rk = ϕ(ω−k, ω0) for every k ∈ [0,m].
Parties reconstruct by sending the values ϕ(ω−k, ωi), interpolating the polyno-
mial ϕ(ω−k, Y ) and evaluating it at ω0. Therefore, as long as Lemma 5 holds,
reconstruction is successful.

Theorem 2. If q-sdh and interpolation binding (Definition 3) hold, then Bingo
satisfies correctness.

For the termination property, showing that if the dealer is nonfaulty then
all nonfaulty parties complete the BingoShare protocol and that all nonfaulty
parties complete the BingoReconstruct protocol is straightforward and is done
by following the messages the dealer and nonfaulty parties are guaranteed to
send. Proving that all nonfaulty parties complete the BingoShare protocol if one
does, on the other hand, is more subtle and requires leveraging the asymmetric
degrees of ϕ, ϕ̂. We start by noting that if some nonfaulty party completed the
protocol, at least f + 1 nonfaulty parties updated their row polynomials αi, α̂i.
These parties send “row” messages to all parties, allowing all nonfaulty parties to
receive at least f +1 evaluation on their columns βi, β̂i. Since those polynomials
are of degree f , this is enough to interpolate the polynomials and proofs and
send “column” messages. After receiving such a message from all n− f ≥ 2f +1
nonfaulty parties, every party will be able to interpolate their rows, which are
of degree no greater than 2f , and complete the BingoShare protocol.

Theorem 3. If q-sdh and interpolation binding (Definition 3) hold, then Bingo
satisfies termination.
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To argue for secrecy, we need to rely on one additional property of the polyno-
mial commitment scheme: that there exist algorithms SimCommit, SimPartialEval
and SimOpen that allow for the simulation of bivariate commitments, partial
evaluations, and openings of commitments respectively. We note that SimOpen

works as follows: ψ, ψ̂
$←− SimOpen(τs, cmψ, {yi, ŷi}i) takes in a trapdoor τs, a

commitment cmψ, and a set of evaluations of yi, ŷi, and outputs a pair of poly-

nomials ψ and ψ̂ such that cmψ = Commit(ψ, ψ̂), ψ(vi) = yi, ψ̂(vi) = ŷi for

all i, and the distribution over (ψ, ψ̂) is uniform, given the above restriction.
Importantly, this must hold even for adversarially chosen evaluation points vi
and evaluations yi, (representing the adversary’s ability to see points from this
party before corrupting it). For completeness, we provide a formal definition of
this property in Appendix A.3.

Theorem 4. If q-sdh holds then Bingo satisfies secrecy.

Finally, we prove the message, word, and round complexity of our protocol.
We define asynchronous rounds following Canetti and Rabin [20], and define
words as the basic objects (counters, indices, etc.) that make up a message, with
cryptographic objects requiring O(λ) words.

Theorem 5. The BingoShare protocol requires O(λn2) words and messages to be
sent overall by all nonfaulty parties. Furthermore, if the bivariate and univariate
PCSs satisfy correctness, interpolation binding, partial evaluation binding and
evaluation binding, then every nonfaulty party completes the protocol in O(1)
rounds after the first nonfaulty party does so, and if the dealer is nonfaulty,
all parties complete the protocol in O(1) rounds. In addition, for every k, the
BingoReconstruct(k) protocol requires O(λn2) words and O(n2) messages to be
sent overall by all nonfaulty parties, and takes O(1) asynchronous rounds to
complete.

Corollary 2. For any m = Ω(n), there exists a packed AVSS protocol sharing
m secrets requiring O(λn2·mn ) words to be sent by nonfaulty parties in the sharing
algorithm and O(λn2) words to be sent while reconstructing any secret.

Proof. Assume without loss of generality that f = n−1
3 . The dealer can take the

m secrets and partition them into
⌈
m
f+1

⌉
= Θ(mn ) batches of no more than f +1

secrets. The i-th secret si can be identified as the (i mod f +1)-th secret in the
⌊ m
f+1⌋-th batch. The dealer then shares each batch using BingoShare, yielding

a communication complexity of Θ(λn2 · mn ). Reconstructing the secret entails
calling BingoReconstruct once, yielding a word complexity of O(λn2).

Remark 1. It is possible to sharem+1 secrets with a polynomial of degree f+m
in X and f in Y , without changing the proofs. This yields rows of degree f +m
instead of degree 2f .
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Algorithm 4 BingoReconstructSumi(dealers, k) for k ∈ [0,m]

1: sharesi,k ← ∅
2: ∀i ∈ [n] cm′

i ←
∏

j∈dealers cmi,j

3: cm′ ← (cm′
1, . . . , cm

′
n)

4: vi,k, v̂i,k, πi,k ← Eval(
∑

j∈dealers αi,j ,
∑

j∈dealers α̂i,j , ω−k)
5: send ⟨“rec”, k, vi,k, v̂i,k, πi,k⟩ to all parties
6: upon receiving the first ⟨“rec”, k, vj,k, v̂j,k, πj,k⟩ message from j, do
7: if Verify(cm′, (−k, j), vj,k, v̂j,k, πj,k) = 1 then
8: sharesi,k ← sharesi,k ∪ {(ωj , vj,k)}
9: if |sharesi,k| = f + 1 then
10: β−k ← Interpolate(sharesi,k)
11: output β−k(ω0) and terminate

4.3 Efficient reconstruction

In this section, we highlight two ways to efficiently reconstruct secrets shared
using BingoShare, namely how to reconstruct sums of secrets and how to batch-
reconstruct multiple secrets.

First, we observe that sharing O(n) secrets requires sending O(λn2) words
and reconstructing each secret requires O(λn2) words. One way to leverage the
efficient sharing protocol is by reconstructing significantly fewer secrets than the
number of secrets shared. This can be done by using the fact that the KZG
PCS is additively homomorphic, meaning if cm1, . . . , cmℓ are commitments to
(ϕ1, ϕ̂1), . . . , (ϕℓ, ϕ̂ℓ) respectively, then

∏ℓ
i=1 cmi is a commitment to the poly-

nomials (
∑ℓ
i=1 ϕi,

∑ℓ
i=1 ϕ̂i). Therefore, let dealers be a set of dealers for which

party i completed BingoShare, and set some k ∈ [0,m]. Then, if we define rk,j
to be the k-th secret in the BingoShare invocation with j as dealer, parties can
reconstruct

∑
j∈dealers rk,j . We provide the code for reconstructing the sum of

several shared secrets in Algorithm 4 and highlight that αi,j , α̂i,j are the poly-
nomials αi, α̂i set by party i when running BingoShare with j as dealer. Similarly,
cmi,j is the commitment cmi in the BingoShare invocation with j as dealer.

It is also possible to batch-reconstruct all m secrets at once while sending
only O(λn2) words, as demonstrated in Algorithm 5. Observe that all secrets are
values of the form ϕ(ω−k, ω0) for k ∈ [0,m]. This means that instead of recon-
structing each secret by interpolating the polynomials ϕ(ω−k, Y ) and evaluating
them at ω0, it is possible to interpolate the degree-2f polynomial ϕ(X,ω0) in
order to reconstruct all m secrets. This requires parties to send points on their β
polynomials, and to provide adequate proofs. Seeing as those proofs need to be
interpolated and verified with respect to a commitment to ϕ(X,ω0), ϕ̂(X,ω0),
we use PartialEval and GetProofs to compute those commitments and proofs.

In both BingoReconstructSum and BingoReconstructBatch, parties send a sin-
gle message of the exact same size as the one sent in BingoReconstruct, resulting
in identical complexity. The proofs that the BingoReconstructSum protocol and
the BingoReconstructBatch protocol satisfy the required properties is identical to
the proof of BingoReconstruct, using the commitments cm′ and cm0 respectively
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Algorithm 5 BingoReconstructBatchi()

1: sharesi ← ∅
2: cm0 ← PartialEval(CM, {ω0}) ▷ only compute partial for ω0

3: (y0, ŷ0, π0)← GetProofs(proofsβ,i, {ω0}) ▷ only compute proof for ω0

4: send ⟨“rec”, y0, ŷ0, π0⟩ to all parties
5: upon receiving the first ⟨“rec”, yj , ŷj , πj⟩ message from j, do
6: if Verify((cm0), (0, j), yj , ŷj , πj) = 1 then
7: sharesi ← sharesi ∪ {(ωj , yj)}
8: if |sharesi| = n− f then ▷ reconstruct along 0’th row, use ≥ 2f + 1 shares
9: α0 ← Interpolate(sharesi)
10: output (α0(ω0), α0(ω−1), . . . , α0(ω−m)) and terminate

instead of cm, and is thus omitted. See the proofs of correctness and termination
of BingoReconstruct for details.

5 From Bingo to ADKG

In this section we show how to use Bingo to achieve an adaptively secure asyn-
chronous distributed key generation (ADKG) protocol that has O(λn3) commu-
nication complexity of and produces a field element as a secret key. Our protocol
can be used as a DKG for a low threshold of f +1, a high threshold of 2f +1, or
any threshold in between. This versatility enables setting up threshold signature
schemes for different uses. For example, using a threshold of f +1 proves that at
least one nonfaulty party signed a message, whereas using a threshold of 2f + 1
proves that a Byzantine quorum signed a message (which has an honest party in
common with any other Byzantine quorum). The below description is consistent
with an ADKG protocol with a threshold of 2f + 1, but the protocol can be
adjusted to a general threshold of f+m+1 for 0 ≤ m ≤ f by having each dealer
share only m+ 1 secrets.

In order to get to a DKG we use Bingo at two layers:

1. We use Bingo to get an adaptively secure validated asynchronous Byzantine
agreement (VABA) protocol. The protocol, presented in Appendix C, allows
proposals (inputs) of size O(n) and requires O(n3) expected words.

2. Each party then uses Bingo to share a potential contribution to the DKG.
Once the VABA protocol reaches agreement on a proposal, we use the abil-
ity of Bingo to reconstruct the sum of secrets. This sum is the secret key,
however, whereas the goal of the DKG is to generate the public key. We thus
perform this reconstruction only in the exponent.

In more detail, we start by defining CMj , proofsβ,i,j as the values CM, proofsβ,i
in the invocation of BingoShare with j as dealer. Intuitively, our DKG protocol
works as follows. First, each party j acts as the dealer for f + 1 secrets, which
we can think of as their 0-th row polynomial α0,j . Parties must then agree
on a set of dealers whose secrets will contribute to the threshold public key
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gs, where the corresponding secret key s is the polynomial α∑ =
∑
j∈dealers α0,j

evaluated at ω0. This agreement requires the use of a VABA protocol. Informally,
a VABA protocol allows each party to input a value and output some agreed-
upon value in a way that is correct, meaning all nonfaulty parties that complete
the protocol output the same value, and valid, meaning that values output by
nonfaulty parties satisfy some external validity function. For a formal definition
of a VABA protocol, see Definition 10 in Appendix C.

Once this set is agreed upon using the VABA protocol, parties act to re-
construct the gs term, as well as their own secret share. For the set of agreed
dealers dealers, this latter value for party i is the sum of the column polynomi-
als βi,j evaluated at ω0, where βi,j is i’s column polynomial in the BingoShare
invocation with j as the dealer. Because βi,j(ω0) = α0,j(ωi), this is equivalent
to evaluating αΣ at ωi. If enough parties share these evaluation points, they can
thus interpolate αΣ and evaluate it at ω0 to reconstruct the secret key. Note
that parties do not directly store their βi,j polynomials, so they must interpo-
late evaluations and proofs from their proofsβ,i,j sets. Similarly, parties do not
compute a commitment to the 0-th row of the polynomial during BingoShare, so
they must compute it using CMj for each dealer j.

We describe how to construct our VABA protocol in Appendix C, following
closely the path of Abraham et al. [3], whose protocol structure is similar to ours
but uses an aggregated PVSS transcript instead of BingoShare. This means we use
their Gather protocol and Bingo to build a weak leader election protocol, relying
particularly on the ability in Bingo to reconstruct sums of secrets, as described in
the previous section. From this weak leader election protocol, in which parties are
guaranteed to elect the same nonfaulty party with only constant probability p, we
build a proposal election protocol, and from that we build an adaptively secure
VABA protocol. Our protocol has O(λn3) word complexity and assumes the
existence of a PKI and the setup required for the KZG polynomial commitment
scheme [40].

Before describing our DKG based on this VABA protocol, we must first ex-
tend the BingoReconstructSumi algorithm (Algorithm 4). Essentially, whereas
BingoReconstructSumi reconstructs the sum s of the k-th secrets across a given
set of dealers, we need to be able to compute the public key gs, which involves
computing the sum in the exponent. The algorithm for party i, given in Al-
gorithm 6, is similar to BingoReconstructSumi but instead of sending yi and ŷi
to other parties (the evaluations of

∑
j∈dealers αi,j and

∑
j∈dealers α̂i,j at point 0

respectively) it sends Yi ← gyi and Ŷi ← gŷi as well as proofs of knowledge of

yi and ŷi. We denote by π
$←− PoK.Prove(Y, y) and 0/1 ← PoK.Verify(Y, π) the

respective algorithms for proving and verifying knowledge of y, and by Verify′ the
PCS algorithm that takes in Y, Ŷ rather than y, ŷ, which is defined as follows.

– 0/1 ← Verify′(cm, ω, Y, Ŷ , π) Output 1 if e(cm · (Y · Ŷ )−1, h) = e(π, hτ−ω),
and otherwise output 0.

Finally, we denote by Yj ← IntEvalExp({vi, Yi}2fi=0, ωj) the algorithm that
performs EvalExp(ωj , InterpolateExp({vi, Yi}i)); i.e., that interpolates the degree-
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2f polynomial given 2f + 1 evaluations and then evaluates it at ωj (all in the
exponent).

With this subprotocol and our VABA in place, we construct our full DKG
as shown in Algorithm 7. Once a party has completed BingoShare for at least
f +1 dealers, it asks at least f +1 other parties to verify that those BingoShare
sessions were indeed completed by sending the set of those dealers in a “proposal”
message. After completing the BingoShare calls for all of these dealers, those
parties reply with a signature on the set of f + 1 dealers. All parties then agree
on a set of f + 1 dealers, dealers, and f + 1 signatures, sigs, using the VABA
protocol with an external validity function defined as follows:

checkValidity(dealers, sigs) = (|dealers| ≥ f + 1 ∧ |sigs| ≥ f + 1 ∧
Verify(pkj , σj , dealers) ∀(j, σj) ∈ sigs).

(1)

If this holds, meaning at least f+1 parties provided a signature for the set of
dealers, then at least one nonfaulty party provided a signature. This nonfaulty
party thus completed BingoShare, and by termination every nonfaulty party will
eventually do so as well. Parties then wait to complete the f+1 BingoShare calls
for the agreed set of dealers. Party i can then invoke BingoSumExpAndReci to
output pk and ski.

Algorithm 6 BingoSumExpAndReci(dealers)

1: sharesi ← ∅
2: ∀j ∈ dealers cm0,j ← PartialEval(CMj , {ω0})
3: cm0 ←

∏
j∈dealers cm0,j

4: ∀j ∈ dealers yi,j , ŷi,j , πi,j ← GetProofs(proofsβ,i,j , {ω0})
5: ski ←

∑
j∈dealers yi,j , ŷi ←

∑
j∈dealers ŷi,j , πi ←

∏
j∈dealers πi,j

6: Yi ← gski , π
$←− PoK.Prove(Yi, ski)

7: Ŷi ← gŷi , π̂
$←− PoK.Prove(Yi, ŷi)

8: send ⟨“key share”, Yi, Ŷi, πi, π, π̂⟩ to all parties
9: upon receiving the first ⟨“key share”, Yj , Ŷj , πj , π, π̂⟩ message from party j, do
10: if Verify′(cm0, ωj , Yj , Ŷj , πj) = PoK.Verify(Yj , π) = PoK.Verify(Ŷj , π̂) = 1 then
11: sharesi ← sharesi ∪ {(ωj , Yj)}
12: if |sharesi| = 2f + 1 then
13: pk← IntEvalExp(sharesi, ω0)
14: output (pk, ski) and terminate

In terms of the security of our DKG, we follow Gennaro et al. [34] in showing
that it satisfies robustness, meaning that all honest parties agree on the same
public key and that there exists an algorithm to allow parties to reconstruct the
corresponding secret key.

Theorem 6. If Bingo and the VABA protocol both satisfy correctness and termi-
nation, and the VABA protocol satisfies validity, then the ADKG in Algorithm 7
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Algorithm 7 ADKGi()

1: propi ← ∅, dealersi ← ∅, sigsi ← ∅
2: s0, . . . , sf

$←− F
3: call BingoShare as dealer sharing s0, . . . , sf
4: participate in BingoShare with j as dealer for every j ∈ [n]
5: upon completing BingoShare with j as dealer, do
6: dealersi ← dealersi ∪ {j}
7: if |dealersi| = f + 1 then ▷ choose f + 1 dealers to propose
8: propi ← dealersi
9: send ⟨“proposal”, propi⟩ to every j ∈ [n]

10: upon receiving the first ⟨“proposal”, propj⟩ message from party j, do
11: upon completing BingoShare with k as leader for every k ∈ propj , do
12: send ⟨“signature”, Sign(ski, propj)⟩ to party j ▷ confirm share completion

13: upon receiving ⟨“signature”, σj⟩ from j, do
14: if propi ̸= ∅ and Verify(pkj , propi, σj) = 1 then
15: sigsi ← sigsi ∪ {(j, σj)}
16: if |sigsi| = f + 1 then
17: invoke VABA with input (propi, sigsi) and external validity function

checkValidity ▷ agree on a set of dealers, at least one honest signature on proposal

18: upon VABA terminating with output (prop, sigs), do
19: upon completing the BingoShare call with j as dealer for every j ∈ prop, do
20: invoke BingoSumExpAndReci with input prop ▷ reconstruct from agreed

dealers
21: upon BingoSumExpAndReci terminating with output (pk, ski), do
22: output pk and terminate
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satisfies robustness against an adaptive adversary that can control f parties,
where the total number of parties is n > 3f .

We prove this formally in Appendix D. Intuitively, we already showed in the
Bingo correctness proof that each iteration of BingoShare defines a polynomial
and that when running BingoReconstruct each party can use only their share of
this polynomial. In Bingo, reconstruction is done on the field element directly,
but in the DKG we just need to show that it also holds when done in the
exponent. This follows in a relatively straightforward way given that parties are
also required to provide proofs of knowledge in their “key share” messages.

For secrecy, it is not clear how to satisfy the definition of Gennaro et al.,
as the Bingo secrecy definition guarantees the ability to simulate interactions in
the BingoShare protocol but for a DKG we need to be able to continue simulat-
ing throughout reconstruction (albeit in the exponent) despite not knowing the
underlying secret or polynomial. We instead prove that our protocol satisfies the
notion of oracle-aided algebraic simulatability, as recently defined by Bacho and
Loss [5, Definition 3.1]. This means that, following their results, our DKG can
be used securely only in the context of threshold BLS signatures.

Definition 4 (Oracle-aided algebraic simulatability). [5] A DKG protocol
has (t, k, TA, TSim)-oracle-aided algebraic simulatability if for every adversary A
that runs in time at most TA and corrupts at most t parties, there exists an
algebraic simulator Sim that runs in time at most TSim, makes k − 1 queries to
a discrete log oracle DL(·), and satisfies the following properties:

– On input ξ ← (gz1 , . . . , gzk), Sim simulates the role of the honest parties
in an execution of the DKG. At the end of the simulation, Sim outputs the
public key pk = gx.

– On input ξ ← (gz1 , . . . , gzk) and for i ∈ [k−1], let gi denote the i-th query to
DL. Let (âi, ai,1, . . . , ai,k) denote the corresponding algebraic coefficients, i.e.

the values such that gi = gâi ·
∏k
j=1(g

zj )ai,j and denote by (â, a0,1, . . . , a0,k)
the algebraic coefficients corresponding to pk. Then the following matrix is
invertible:

L :=


a0,1 a0,2 . . . a0,k
a1,1 a1,2 . . . a1,k
...

...
...

ak−1,1 ak−1,2 . . . ak−1,k

 .

Whenever Sim completes a simulation of an execution of the DKG, we call
L the simulatability matrix of Sim (for this particular simulation).

– Denote by viewA,y,DKG the view of A in an execution of the DKG conditioned
on all honest parties outputting pk = y. Similarly, denote by viewA,ξ,y,Sim
the view of A when interacting with Sim on input ξ, conditioned on Sim
outputting pk = y. (For convenience, Sim’s final output pk is omitted from
viewA,ξ,y,Sim). Then, for all y and all ξ, viewA,ξ,y,Sim and viewA,y,DKG are
computationally indistinguishable.
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Intuitively, our DKG simulator follows the Bingo secrecy simulator during
the BingoShare interactions and otherwise behaves honestly up until the point
at which it has to send a “key share” message. It then uses the omdl challenges to
define points on a polynomial and sends “key share” messages that are consistent
with these points. Crucially, this polynomial is also consistent with the public key
that the simulator needs to output, which it also chooses from its omdl challenge.
If a party is corrupted after sending a “key share” message, the simulator can
then create the appropriate state by calling its DL oracle. Access to the DL oracle
is essential in doing this precisely because we need adaptive security and thus
the simulator does not know in advance which parties will be corrupted.

Theorem 7. If Bingo satisfies correctness and secrecy and the VABA satisfies
correctness and external validity, then the ADKG in Algorithm 7 has (f, 2f+1)-
oracle-aided algebraic security against an adaptive adversary that can control f
parties, where the total number of parties is n > 3f .

Proof. We begin by describing the simulator Sim
DL(·)
A , which takes in a generator

g and 2f + 1 group elements Z0, Z1, . . . , Zf , Ẑ1, . . . , Ẑf . To simulate nonfaulty
parties in the DKG protocol, Sim acts as the Bingo simulator during BingoShare
interactions (this simulator is guaranteed to exist by secrecy, and is described in
the proof of Theorem 4.) During all other parts of the DKG before line 20, the
simulator behaves honestly; i.e. it honestly computes and sends “proposal” mes-
sages, responds with “signature” messages when it receives “proposal” messages,
and invokes the VABA protocol once it has enough signatures.

When the first nonfaulty party completes the VABA protocol with output
(dealers, sigs), Sim sets C to be the set of currently corrupted parties. From the
correctness of the VABA protocol, all nonfaulty parties also output (dealers, sigs).
In addition, from the external validity property, sigs contains at least f + 1
signatures on the set dealers, which means that it includes at least one signature
from a nonfaulty party. Nonfaulty parties only sign dealers if they have completed
the BingoShare invocations with j as dealer for every j ∈ dealers, and thus
at least one nonfaulty party completed the protocol for each such dealer. As
shown in Lemma 4, for every faulty dealer j ∈ dealers, it is possible to extract
polynomials ϕj , ϕ̂j from the combined views of the nonfaulty parties, which Sim
can do as it has these views and behaves completely honestly when the dealer
is faulty. On the other hand, in the proof of Theorem 4, the simulator defines
polynomials αi,j , α̂i,j , βi,j , β̂i,j for every faulty i in the simulated BingoShare
invocation with a nonfaulty j as dealer. Putting this together, Sim thus knows
the polynomials αi,j , α̂i,j , βi,j , β̂i,j for faulty dealers j ∈ dealers and all parties

i and the polynomials αi,j , α̂i,j , βi,j , β̂i,j for nonfaulty dealers j ∈ dealers and
faulty parties i.

Let ℓ be the number of parties corrupted at the time the first nonfaulty
party completes the VABA protocol, and let C = {i1, . . . , iℓ}. Sim chooses I =
{iℓ+1, . . . , if} ⊂ [n] to be some subset of [n] of size f−k such that C∩I = ∅ (for
example, the f − k minimal indices that aren’t in C). Sim chooses an additional
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set I ′ = {if+1, . . . , i2f}7 such that I ′ ∩ C = ∅ and I ′ ∩ I = ∅. Finally, let
i2f+1, . . . , in be the indices of the remaining parties, i.e. {i2f+1, . . . , in} = [n] \
(C ∪ I ∪ I ′). Sim then defines Z ′

0 ← Z0 and i0 = 0, as well as the following:

– For every k ∈ [ℓ], Z ′
ik
← g

∑
j∈dealers βik,j(0) and Ẑ ′

ik
← ĝ

∑
j∈dealers β̂ik,j(0).

– For every k ∈ {ℓ+ 1, . . . , f}, Z ′
ik
← Zk and Ẑ ′

ik
← Ẑk.

– For every k ∈ {f + 1, . . . , 2f}, Sim samples zik , ẑik
$←− F and sets Z ′

ik
← gzik

and Ẑik ← ĝẑik .

– For every k ∈ {2f + 1, . . . , n}, Z ′
ik
← IntEvalExp({(ωim , Z ′

im
)}2fm=0, ωik).

The simulator then computes Z ′
τ ← IntEvalExp({(ωim , Z ′

im
)}2fm=0, τ), as well

as cm0 ←
∏
j∈dealers cm0,j (as computed in BingoSumExpAndRec), and Ẑ ′

τ ←
(cm0(Z

′
τ )

−1)
1
x . It computes Ẑ ′

ik
← IntEvalExp({(ωim , Ẑ ′

im
)}m∈[2f ]∪{(τ, Ẑ ′

τ )}, ωik)
for every k ∈ {2f + 1, . . . , n}. Finally, Sim calls its discrete log oracle 2ℓ times
on Zi1 , . . . , Ziℓ , Ẑi1 , . . . , Ẑiℓ .

After computing these values, Sim is now ready to simulate nonfaulty par-
ties in Algorithm 6. Whenever a nonfaulty party i should send a “key share”

message, Sim computes πi ← (cm0 · (Z ′
iẐ

′
i)

−1)
1

τ−ωi as well as simulated proofs of

knowledge π, π̂ for Z ′
i and Ẑ

′
i respectively. Sim then adds messages to the buffer

as if i sent the message ⟨“key share”Z ′
i, Ẑ

′
i, πi, π, π̂⟩ to all parties. If the adversary

corrupts party i after this point and i /∈ {if+1, . . . , i2f}, Sim calls its discrete log

oracle twice to get zi = DL(Z ′
i), ẑi = DL(Ẑ ′

i). On the other hand, if the adversary
corrupts party i and i ∈ {if+1, . . . , i2f}, it uses the previously sampled zi and ẑi
instead and does not call its DL oracle. It then generates i’s view following the
Bingo simulator (described in the proof of secrecy) in all invocations of Bingo with
honest dealers except for one nonfaulty dealer j ∈ dealers, including generating
appropriate α and β polynomials for i. For this dealer j, it uniformly samples
a degree-f polynomial βi,j(Y ) such that βi,j(0) = zi −

∑
k∈dealers\{j} βi,k(0) and

αk,j(ωi) = βi,j(ωk) for all corrupted k. Similarly, it samples a degree-f polyno-

mial β̂i,j(Y ) such that β̂i,j(0) = ẑi−
∑
k∈dealers\{j} β̂i,k(0) and α̂k,j(ωi) = β̂i,j(ωk)

for every corrupted k. Again following the Bingo simulator, Sim calls SimOpen

to define αi,j , α̂i,j given the sampled βi,j , β̂i,j , i.e. it computes αi,j , α̂i,j
$←−

SimOpen(τs, cmi,j , ci,j , {ωk, βk,j(ωi), β̂k,j(ωi)}k∈C), where C is the set of cur-
rently corrupted parties and ci,j is the auxiliary information computed by the
Bingo simulator when running BingoShare with i as the dealer. Finally, in or-
der to generate i’s view as a dealer, Sim runs the Bingo simulator to generate
the polynomials ϕiand ϕ̂i and associated view. Sim then adds i to the set of
corrupted parties and continues in the simulation. At the point at which some
nonfaulty party completes the DKG protocol, let jℓ+1, . . . , jℓ+m be the indices
of the parties corrupted after the first nonfaulty party completed the VABA
protocol such that for every k ∈ {ℓ+ 1, . . . , ℓ+m}, jk /∈ I ′. Sim chooses indices
jℓ+m+1, . . . , jf /∈ I ′ of parties that weren’t corrupted by the adversary and calls

7 For a threshold of f +m+ 1, define I ′ = {if+1, . . . , if+m} instead.
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DL(Z ′
jk
) and DL(Ẑ ′

jk
) for every k ∈ {ℓ+m+ 1, . . . , f}. Finally, Sim outputs Z0

as pk and terminates.

We must now argue that the simulator satisfies the requirements of oracle-
aided algebraic security, namely that it correctly simulates interactions with
honest parties and that the matrix containing its algebraic coefficients is in-
vertible. For the first requirement, Theorem 4 tells us that the simulated runs
of the BingoShare protocol are computationally indistinguishable from normal
runs of the protocol. The simulator then runs the DKG protocol honestly up
to line 20. In the non-simulated invocation of BingoSumExpAndRec, each non-
faulty party i sends a “key share” message with Yi = g

∑
j∈dealers βi,j(0), Ŷi =

ĝ
∑

j∈dealers β̂i,j(0), πi being the unique proof for which Verify′ verifies (once the
other values have been fixed), and two proofs of knowledge. Importantly, the

pair of polynomials ϕΣ =
∑
j∈dealers ϕj and ϕ̂Σ =

∑
j∈dealers ϕj satisfy cm0 =

Commit(ϕΣ ; ϕ̂Σ). Note that
∑
j∈dealers βi,j(0) =

∑
j∈dealers ϕj(ωi, 0) and similarly∑

j∈dealers β̂i,j(0) =
∑
j∈dealers ϕ̂j(ωi, 0). From Theorem 4, before some nonfaulty

party calls BingoReconstruct(0) on a value shared by a nonfaulty dealer, the
value is entirely independent of the adversary’s view. This is because the simula-
tor could complete the run to correctly reconstruct any possible secret from that
point on. Therefore, since the one nonfaulty dealer in dealers uniformly sampled
its secrets, the sum is uniform and independent of the adversary’s view. In the
simulation, the nonfaulty parties also send messages with Z ′

i, Ẑ
′
i such that their

discrete logs lie on uniformly sampled polynomials of the same degree that are
consistent with cm0 and the points

∑
j∈dealers ϕj(ωk, 0) and

∑
j∈dealers ϕ̂j(ωk, 0)

of faulty parties. In addition, the proof π is the unique proof for which Verify′

verifies, and the proofs of knowledge are perfectly simulated. Finally, whenever a
party i is corrupted during BingoSumExpAndRec, its view is made consistent with
Z ′
i, Ẑ

′
i and the rest of the BingoShare simulation is identical to the simulation

described in Theorem 4. Its view is thus sampled identically as well.

We now consider the matrix defined by the algebraic coefficients given by
Sim when querying its DL oracle, with the goal of proving that it is invertible.
For each i ∈ [ℓ], the algebraic representation for the oracle call DL(Zi) is simply
the indicator vector that equals 1 in the coordinate corresponding to the input
element Zi and 0 elsewhere. Similarly, for each i ∈ [ℓ], the algebraic representa-
tion for DL(Ẑi) is the indicator vector for Ẑi, and the algebraic representation
of pk = Z0 is the indicator vector for Z0. We can thus rearrange the rows and
columns of the matrix—which does not affect its invertibility—so that the first
2ℓ rows and columns are the indicator vectors corresponding to the elements
Z1, . . . , Zℓ, Ẑ1, . . . , Ẑℓ. The remaining algebraic expressions for each DL(Z ′

i) call
result from interpolating Z ′

0, Z
′
1, . . . Z

′
f and then evaluating at ωi, both of which

are linear functions. The algebraic expressions for Ẑ ′
i are computed in a similar

fashion. The first set of elements were not used in forming any of the Z ′
i, Ẑ

′
i

group elements, and thus the rearranged matrix is a block matrix of the form

L =

(
I 0
0 A

)
, where I is the identity matrix of size 2ℓ × 2ℓ and A is a matrix
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with the algebraic representation of the DL(Z ′
i) and DL(Ẑ ′

i) calls, as well as the
algebraic representation of Z0.

In order to show that L is invertible, it is enough to show that A is invertible,
since I is trivially invertible. We do that by showing that the linear transfor-
mation defined by A is invertible. Let jℓ+1, . . . , jf be defined as above. Then

A represents some linear transformation from Z0, Zℓ+1, . . . , Zf , Ẑℓ+1, . . . , Ẑf to

pk, Z ′
jℓ+1

, . . . , Z ′
jf
, Ẑ ′

jℓ+1
, . . . , Ẑ ′

jf
. This function has the same size domain and

range (since the number of elements is the same), so to prove that it is in-
vertible it suffices to show that it is one-to-one. Assume that two sets of inputs
Z0, Zℓ+1, . . . , Zf , Ẑℓ+1, . . . , Ẑf andX0, Xℓ+1, . . . , Xf , X̂ℓ+1, . . . , X̂f yield the same

output pk, Z ′
jℓ+1

, . . . , Z ′
jf
, Ẑ ′

jℓ+1
, . . . , Ẑ ′

jf
. The discrete logs of Z ′

0, Z
′
1, . . . , Z

′
n and

Z ′
τ all lie on the same f -degree polynomial, and thus any f + 1 such ele-

ments define the polynomial fully and the rest of the points. Therefore, the
elements Z ′

0, Z
′
i1
, . . . , Z ′

iℓ
, Z ′

jℓ+1
, . . . , Z ′

jf
fully define the entire set Z ′

0, Z
′
1, . . . , Z

′
n.

In this case, Z ′
0, Z

′
jℓ+1

, . . . , Z ′
jf

are all parts of the output of the function, and

Z ′
i1
, . . . , Z ′

iℓ
are constants computed directly by Sim. Therefore, the function’s

output uniquely defines Z ′
0, Z

′
1, . . . , Z

′
n, Z

′
τ . Note that by construction Z ′

0 = Z0 =
X0 and also Z ′

ik
= Zk = Xk for every k ∈ {ℓ+1, . . . , f}, and thus the first half of

the inputs is equal. In addition, Ẑ ′
τ is uniquely defined given the previous values,

and thus Ẑ ′
τ , Ẑ

′
i1
, . . . , Ẑ ′

iℓ
, Ẑ ′

jℓ+1
, . . . , Ẑ ′

jf
define the group elements Ẑ ′

1, . . . , Ẑ
′
n.

Therefore, for similar reasons, Ẑ ′
ik

= Ẑk = X̂k for every k ∈ {ℓ + 1, . . . , f}. In
other words, all elements of the input must be equal, and thus the function is
one-to-one. ⊓⊔
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A Proofs and Additional Properties for Our PCS

A.1 A proof of interpolation binding (Lemma 1)

Proof. Let A be an algebraic adversary against Gint-binding
A (1λ). We demonstrate

the existence of adversaries B1,B2 such that

Pr[Gint-binding
A (1λ)] ≤ Advdlog

B1
(1λ) +Advqsdh

B2
(1λ)

We proceed by transitioning to a game GA
1 (1

λ) such that

Pr[Gint-binding
A (1λ)]− Pr[G1

A(1
λ)] ≤ Advdlog

B1
(1λ)

Pr[G1
A(1

λ)] ≤ Advqsdh
B2

(1λ).

The two properties combined give us our result.

Gint-binding
A (1λ) → G1

A(1λ): Let G1
A(1

λ) be the game that initially behaves

identically to Gint-binding
A (1λ). When A returns (A, {(ωi,mi, m̂i, πi)}i∈[d+1])

$←−
A(srs) and the algebraic representations c(X), ĉ(X), q(X), q̂(X) such that A =
gc(τ)ĝĉ(τ) and πi = gqi(τ)ĝq̂i(τ), then check whether for all i we have that

e(gc(τ)−mi , h) = e(gqi(τ), hτ−ωi) ∧ e(ĝĉ(τ)−m̂i , h) = e(ĝq̂i(τ), hτ−ωi)

If this event happens then G1
A(λ) sets a flag bad and returns 1.

Since these two games are identical until this event E, Pr[Gint-binding
A (λ)] −

Pr[G1
A(λ)] = Pr[E]. We design an adversary B1 against dlog such that Pr[E] ≤

Advdlog
B1

(1λ). B1 behaves as follows.

B1(g, ĝ)
τ

$←− F
srs← {gτ i

, ĝτ
i

, hτ
i}d1i=0

((A | c(X), ĉ(X)), {(ωi,mi, m̂i, (πi | qi(X), q̂i(X)))}i∈[d+1])
$←− A(srs)

for 1 ≤ i ≤ d+ 1 :
ui ← c(τ)−mi − qi(τ)(τ − ωi)
ûi ← q̂i(τ)(τ − ωi)− ĉ(τ) + m̂i

if ûi ̸= 0 then return ui/ûi

If Gint-binding
A (1λ) returns 1 but G1

A(1
λ) returns 0 then (1) all proofs verify and

(2) there exists some i such that ûi ̸= 0. Indeed if

e(ĝĉ(τ)−m̂i , h) ̸= e(ĝq̂i(τ), hτ−ωi)

then ĉ(τ) − m̂i ̸= q̂i(τ)(τ − ωi). Further, since the verification equation passes
we have that

e(gc(τ)−mi ĝĉ(τ)−m̂i , h) = e(gqi(τ)ĝq̂i(τ), hτ−ωi)

⇒e(gc(τ)−mi , h)e(g−qi(τ), hτ−ωi) = e(ĝ−(ĉ(τ)−m̂i), h)e(ĝq̂i(τ), hτ1−ωi)

⇒gui = ĝûi
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and B1 returns a valid discrete logarithm.

G1
A(1λ): We design an adversary B2 against q-sdh such that

Pr[G1
A(1

λ)] ≤ Advqsdh
B2

(1λ)

that behaves as follows.

B2(g, h, gτ , hτ . . . , gτ
d1
, hτ

d1
)

x
$←− F,G

srs← {gτ i

, gxτ
i

, hτ
i}d1i=0

((A | c(X), ĉ(X)), {(ωi,mi, m̂i, (πi | qi(X), q̂i(X)))}i∈[d+1])
$←− A(srs)

for 1 ≤ i ≤ d+ 1 :
a(X) = c(X)−mi − q(X)(X − ωi)
if a(X) ̸= 0:
let j be smallest such that aj ̸= 0

return (g−a
−1
j

∑
k=j+1 ak , 0)

â(X) = ĉ(X)− m̂i − q̂(X)(X − ωi)
if â(X) ̸= 0:
let j be smallest such that âj ̸= 0

return (g−â
−1
j

∑
k=j+1 âk , 0)

If G1
A(1

λ) returns 1 then either

1. c(X) ̸= Interpolate({ωi,mi}i∈[d+1]);
2. or ĉ(X) ̸= Interpolate({ωi, m̂i}i∈[d+1])

Thus there exists some i such that either

1. c(ωi) ̸= mi;
2. or ĉ(ωi) ̸= m̂i;

But then either

1. c(X)−mi − q(X)(X − ωi) ̸= 0;
2. or ĉ(X)− m̂i − q̂(X)(X − ωi) ̸= 0;

since they don’t evaluate to 0 at ωi and hence B2 returns a correct q-sdh solution.

A.2 A proof of GetProofs correctness (Lemma 2)

Proof. Suppose we have such values C,A, {(vi, yi, ŷi, πi)}. Then the commit-
ment C is some bivariate commitment and there exists (at least one) c(X),
ĉ(X) degree-d1 polynomials such that

C =
(
gc0 ĝĉ0 , . . . , gcd1 ĝĉd1

)
.
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Where the evaluations verify we have that

e(Avig
−yi ĝ−ŷi , h) = e(πi, h

τ−ωj ).

Substituting

Ai =

d1∏
ℓ=0

C
ωℓ

vi

ℓ = gc(ωvi
)ĝĉ(ωvi

)

yields

e(gc(ωvi
)−yvi ĝĉ(ωvi

)−ŷvi , h) = e(πi, h
τ−ωj ).

Thus when we define

γi = (c(ωvi)− yi)/(τ − ωj) and γ̂i = (ĉ(ωvi)− ŷi)/(τ − ωj)

we have that πi = gγi ĝγ̂i .

Now set p(X) = Interpolate({(ωvi , γi)}i∈[d1+1]}) and p̂(X) = Interpolate(
{(ωvi , γ̂i)}i∈[d1+1]}). Then P = InterpolateExp({(ωvi , πi)}i∈[d1+1]) as defined in
GetProofs, and thus we have that

P = (gp0 ĝp̂0 , . . . , gpd1 ĝp̂d1 ).

Now observe that where

c(ωvi)− yi = p(ωi)(τ − ωj)

and c(X), p(X) are degree d1 polynomials (by definition), then when GetProofs
defines the degree d1 polynomial

βj(X)← Interpolate
(
{(ωvi , yi)}i∈[d1+1]

)
then

c(X)− βj(X) = p(X)(τ − ωj).

Similarly

ĉ(X)− β̂j(X) = p̂(X)(τ − ωj),

and thus

e(gc(ωi)−βj(ωi)ĝĉ(ωi)−β̂j(ωi), h) = e(gp(ωi)ĝp̂(ωi), hτ−ωj ).

This means that

VerifyEval(A, (j, i), βj(ωi), β̂j(ωi), π̄i) = 1

as required.
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A.3 Hiding requirements for the univariate PCS

Definition 5. Consider the game GA
sim(1

λ) that works as follows

main(1λ, d)

srs
$←− Setup(1λ, d; tr)

b
$←− {0, 1}; Q← ∅

α(X)
$←− A(srs), α̂(X)

$←− F[X]
if b = 0: C ← KZGCommit(srs, α(X); α̂(X))

if b = 1: (C, c)
$←− SimCommit(srs)

b′
$←− AOb(srs, C)

return b = b′

OEval0(ω)

return KZGEval(srs, C, α(X), α̂(X), ω)

OEval1(ω)

Q′ ← Q ∪ {(ω, α(ω), α̂(ω)}
(ŷ, π)← SimEval(srs, tr, C, c, ω,Q′)
if ω ̸∈ Q:

Q← Q ∪ {(ω, α(ω), ŷ}
return (α(ω), ŷ, π)

OOpen0()

return (α(X), α̂(X))

OOpen1()

α∗, α̂∗ $←− SimOpen(τs, (cm, c), Q)
while |Q| ≤ d+ 1:

choose ω ̸∈ Q
Q← Q ∪ {(ω, α∗(ω), α̂∗(ω)}

return (α∗(X), α̂∗(X))

with respect to the simulated commitment algorithm (C, c)
$←− SimCommit(srs)

and the simulated evaluation algorithm (ŷ, π)
$←− SimEval(srs, tr, y, ω). Let the ad-

vantage of an adversary A against hiding be Advhiding
A (1λ) = |2Pr[GA

hiding(1
λ)]−

1| We say that a (univariate) polynomial commitment scheme is hiding if there
exists a simulator (SimCommit(),SimEval(),SimOpen()) such that for all adver-

saries A, Advhiding
A (1λ) ≤ negl(1λ).

In Lemma 6 we prove that our univariate polynomial commitment scheme
in Figure 2 is hiding. To do this we show the existence of a simulator that can
(using a trapdoor) open a polynomial commitment to up to d evaluations that
it only learns upon being queried. The simulator is indistinguishable from a real
evaluator that does know the contents of its polynomial commitment.

Lemma 6. The KZG polynomial commitment scheme in Figure 2 is hiding.

Proof. Define the simulation algorithm that works as follows
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SimCommit(srs)

c
$←− F

C ← gc

return (C, c)

SimOpen(srs, (τ, x), (C, c), Q)

Q′ ← Q
while |Q′| ≤ d:

choose vi ̸∈ Q
yi, ŷi

$←− F
(vi, yi, ŷi)

$←− F
Q′ ← Q′ ∪ {(vi, yi, ŷi)}

α(X)← Interpolate({(ωvi , yi)}di=1)
ĉ← (c− α(τ))/x
α̂(X)← Interpolate({(ωvi , ŷi)}i∈[1,d] ∪ {(τ, ĉ)})
return (α(X), α̂(X))

SimEval(srs, (τ, x), C, c, ω,Q)

set k s.t. ωk = ω for (ωk, yk, ŷk) ∈ Q the kth entry in Q

if k ≤ d: π ←
(
Cg−yk ĝ−ŷk

) 1
τ−ω

if k > d:

α(X)← Interpolate({(ωi, yi)}d+1
i=1 )

ĉ← (c− α(τ))/x
α̂(X)← Interpolate({(ωi, ŷi)}i∈[1,d] ∪ {(τ, ĉ)})
(yk, ŷk, π)← KZGEval(srs, C, α(X), α̂(X), ω)

return (ŷk, π)

We must argue that SimCommit, SimOpen, SimEval are indistinguishable from
KZGCommit, KZGOpen, KZGEval.

Evaluations given as input in Q are identical to the honest evaluations. The
first d− 1 proofs π1, . . . , πd−1 are the unique values satisfying the verifiers equa-
tion given C, yi, ŷi and thus are distributed identically in the honest and sim-
ulated cases. Subsequent evaluations α̂(ωd+k) are uniquely defined given C and
the previous evaluations i.e. they are evaluations of the unique points such that
C = gα(τ)ĝα̂(τ) and α̂(ωi) = ŷi. Subsequent proofs are the unique values satisfy-
ing the verifiers equation given C, yi, ŷi and thus are distributed identically in
the honest and simulated cases. The opening α̂(X) is the unique degree (d− 1)
polynomial that passes through d−1 random points and the point (c− α(τ)) /x
at τ and is thus distributed identically in the honest and simulated cases.

Lemma 7. Consider the game GA
partialsim(1

λ) that works as follows
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main(1λ, 2f + 1, f + 1)

b
$←− {0, 1}

if b = 0:
(C, c)← SimCommit()

if b = 1:

{(CMi, di)
$←− SimCommit()}fi=0

(cm, c)← SimPartialEval(CM,d, V )

(C, c) = (cmj , cj)
$←− (cm, c)

b′
$←− A(C, c)

return b = b′

The bivariate polynomial commitment scheme in Fig. 3 is such that there exists
an algorithm SimPartialEval() such that |2Pr[GA

partialsim(1λ)]− 1| = 0.

Proof. The simulated partial evaluation algorithms takes as input d such that
CMi = gdi for each commitment CMi. It runs (cm, c) ← (DFTExp(CM, V ),
DFT(d, V )) such that cmi = gci . Hence for a random j we have that (cmj , cj)
this is perfectly indistinguishable from the output of SimCommit().

B PAVSS Definitions and Security Proofs for Bingo

B.1 Interactive protocols with adaptive corruptions

At its heart, a verifiable secret sharing (VSS) scheme is an interactive protocol
between multiple parties. In this protocol, we assume that all messages sent
between parties are encrypted and authenticated, and identify (at least) both
their sender and recipient. We leave it as optional for the message to specify
other metadata, such as the index of a concurrent session.

For each party i, we define their local state as statei, which initially consists of
their own private key, the public keys of all other parties, and their random tape.
We denote by transi the transcript of i, which is an ordered list of their sent and
received messages, and define their local view viewi as the pair (transi, statei). To
capture how this view evolves, we denote by viewi,t the view of the i-th party at
the t-th step of the protocol; the party does not know themselves at which step
they are but this is defined in a global sense. We define viewt to be the global
view of the protocol at step t, which contains viewi,t for all nonfaulty parties i.

To model an adversary participating in an interactive protocol, we consider
a game that allows them to send messages to nonfaulty parties and, indirectly,
cause nonfaulty parties to send messages to each other. To capture the strongest
adversary, we allow them to both (1) have complete control over the scheduling of
messages and (2) adaptively corrupt nonfaulty parties. To capture this first abil-
ity, we provide the adversary with an oracle Obuffer that acts as a message buffer.
The adversary can query this oracle in three different ways: (1) Obuffer(add, x)
adds x to the message buffer, and thus allows an adversary to send a message
to a nonfaulty party from a party it controls; (2) Obuffer(deliver, j) delivers the
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j-th message in the buffer; and (3) Obuffer(see) shows the adversary the contents
of the message buffer. When messages are delivered to a nonfaulty party, the
game also runs the code for that party on that message. This may in turn re-
sult in updates to their internal state and in new messages being added to the
buffer and thus allows nonfaulty parties to send messages to each other (with
the adversary controlling the delay with which they are delivered).

To capture the ability to corrupt nonfaulty parties, we have the game start
with an initial set NF of nonfaulty parties. We then provide the adversary with
access to an oracle Ocorr that, when queried on a given index i at step t, provides
the adversary with viewi,t and removes i from NF .

B.2 Packed asynchronous verifiable secret sharing (PAVSS)

To capture security definitions for a packed AVSS, we follow the outline described
in Section B.1, starting with a global view view. We augment the view of each
nonfaulty party i with 2m+ 4 flags designed to capture how far this party has
made it in the protocol: first, startedSi and finishedSi keep track of whether or
not they have, respectively, started and finished the Share protocol. We then
have m+1 flags readyRi,k representing whether or not the i-th party is ready to
start Reconstruct(k), and another m + 1 flags finishedRi,k representing whether
or not they have finished Reconstruct(k).

A party’s readiness to invoke Reconstruct(k) depends on the context in which
the VSS is used; we can think of an external predicate P (k) that tells the party
if the k-th secret is ready to be reconstructed or not. The i-th party then in-
vokes Reconstruct(k) once finishedSi = readyRi,k = true. To continue giving an
adversary as much control as possible, we allow it to also determine when these
external predicates evaluate to true, as well as when parties start the Share pro-
tocol. This means that in addition to the Obuffer and Ocorr oracles described above
we give the adversary access to two oracles: OS and OR. On input i ∈ NF , OS
sets startedSi ← true and has the party run the first step of Share according to
their current view. On input i ∈ NF and k ∈ [m], OR sets readyRi,k ← true.
It then also runs the first step of Reconstruct(k) if finishedSi = true; if not, this
gets run once a call to Obuffer(deliver, j) causes the i-th party to finish Share.

All our security definitions below thus follow the same implicit game struc-
ture, in a “meta” game that we call GPAVSS

A (λ): a PPT adversary A plays a game
with access to four oracles: the message buffer Obuffer, the corruption oracle Ocorr,
and the two oracles OS and OR that dictate when nonfaulty parties are ready to
start participating in, respectively, the Share and Reconstruct protocols. In every
game, security holds only if an adversary can corrupt at most f parties.

B.3 A proof of Lemma 4

Proof. If the dealer is nonfaulty, then Ext can just output the polynomials
ϕ(X,Y ) and ϕ̂(X,Y ) stored in its local state (or recompute them from the in-
puts sk and the dealer’s random tape). By the way the dealer samples ϕ(X,Y ),
we know that ∀k ∈ [0,m] sk = ϕ(ω−k, ω0).
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If the dealer is faulty, observe the time the first non-faulty party completes
the BingoShare protocol. It received a “done” message from n − f parties, and
out of those parties, at least f + 1 are nonfaulty. Let I be a set of f + 1 such
nonfaulty parties. Before sending a “done” message, each i ∈ I checks that
αi(X) ̸= ⊥, α̂i(X) ̸= ⊥. Define ϕ(X,Y ) and ϕ̂(X,Y ) to be the unique bivari-
ate polynomials of degree 2f in X and f in Y such that ∀i ∈ I ϕ(X,ωi) =

αi(X), ϕ̂(X,ωi) = α̂i(X).
Before updating αi(X), α̂i(X), each i ∈ I checks that cm ̸= ∅. If i found

that this is the case, it received a ⟨“commits”,CM⟩ broadcast from the dealer
and updated cm← PartialEval(CM, {ω1, . . . , ωn}). Party i updates αi(X), α̂i(X)
in either line 10 or in line 31. If i does so in line 10, it first checks that cmi =
Commit(αi(X), α̂i(X)).

If i updates αi, α̂i in line 31, then it received a ⟨“column”, yj , ŷj , πj⟩ from 2f+
1 different parties j such that Verify(cm, (i, j), yj , ŷj , πj) = 1 and added corre-
sponding tuples to pointsα,i and pointsα̂,i. In that case, we have that Verify(cm, (i,
j), yj , ŷj , πj) = 1 if and only if KZGVerify(cmi, ωj , yj , ŷj , πj) = 1. Hence we can
build a reduction B such that

Pr[cmi ̸= Commit(αi(X); α̂i(X))] ≤ Advint-binding
B (1λ)

that simply returns (cmi, {ωj , βj(i), β̂j(i), πj}j∈J), where J is the set of parties
from which i received the aforementioned “column” messages. If the KZG poly-
nomial commitment scheme satisfies interpolation binding (see Lemma 1) then

Advint-binding
B (1λ) ≤ negl(λ).

Finally observe that since cm = DFTExp(CM, {ω1, . . . , ωn}) we also have
that CM = InterpolateExp({(ωi, cmi)}i∈I). Thus from Lemma 3 we have that

CM = Commit(ϕ(X,Y ); ϕ̂(X,Y )). ⊓⊔

B.4 A proof of Lemma 5

Proof. From Lemma 4, we have that CM = Commit(ϕ(X,Y ); ϕ̂(X,Y )). Conse-
quently, for cm = PartialEval(CM, {ω1, . . . , ωn}) we have that for every i ∈ [n],

cmi = Commit(ϕ(X,ωi); ϕ̂(X,ωi)).
Consider an adversary A that is attempting to break the lemma statement

i.e. suppose there exists an adversary A such that either:

1. party i receives a ⟨“row”, yj , ŷj , πα,j,i⟩ message from some party j such that

Verify(cm, (i, j), (yj , ŷj), πα,j,i) and (yj , ŷj) ̸= (ϕ(ωi, ωj), ϕ̂(ωi, ωj));
2. or party i receives a ⟨“column”, yj , ŷj , πβ,j,i⟩ message from some party j such

that Verify(cm, (j, i), (yj , ŷj), πβ,j,i) = 1 and (yj , ŷj) ̸= (ϕ(ωj , ωi), ϕ̂(ωj , ωi)).

We first transition to an identical game G1 where either Ext returns ϕ(X,Y ),

ϕ̂(X,Y ) ← Ext(viewt) such that CM = Commit(ϕ(X,Y ); ϕ̂(X,Y )) or the game
aborts. By Lemma 4 we have that

Adv 0
A (λ) ≤ Adv 1

A (λ) +Advint-binding
Ext,B1

(λ)

41



We design an adversary B that succeeds against evaluation binding. Let B(srs)
be an adversary against evaluation binding that runs A and Ext as a subroutine.
Note that B runs all of the nonfaulty parties and so has access to their view
of the protocol. At time t the reduction B runs ϕ(X,Y ), ϕ̂(X,Y ) ← Ext(viewt),
cm← PartialEval(CM, {ω1, . . . , ωn}) and either

1. if Verify(cm, (j, i), (yj , ŷj), πβ,j,i) and (yj , ŷj) ̸= (ϕ(ωj , ωi), ϕ̂(ωj , ωi)); then B
runs

(m, m̂, π)← Eval(ϕ(X,ωi), ϕ̂(X,ωi), ωj)

and returns ((j, i), (yj , ŷj , πβ,j,i), (m, m̂, π)).

2. if Verify((i, j), (yj , ŷj), πα,i,j) and (yj , ŷj) ̸= (ϕ(ωi, ωj), ϕ̂(ωi, ωj)); then B
runs

(m, m̂, π)← Eval(ϕ(X,ωj), ϕ̂(X,ωj), ωi)

and returns ((i, j), (yj , ŷj , πα,i,j), (m, m̂, π)).

Where (m, m̂, π) are honest evaluations of CM they will verify and thus B breaks
the evaluation binding of the polynomial commitment scheme. ⊓⊔

B.5 A proof of correctness (Theorem 2)

We first formally define correctness for a PAVSS as follows:

Definition 6 (Correctness). Define an extractor Ext that is given the state of
the nonfaulty parties at the point at which the first nonfaulty party has completed
Share, and outputs m+ 1 values r0, . . . , rm ∈ F. In other words, define t as the
first step at which viewt contains finishedSi = true for some index i, and define

Ext such that r0, . . . , rm
$←− Ext(viewt). There exists a polynomial-time Ext for

all adversaries A such that the following holds for every k ∈ [0,m] with all but
negligible probability in the security parameter:

1. If the dealer is nonfaulty, rk = sk.
2. Every nonfaulty party that completes protocol Reconstruct(k) outputs the

value rk.

With this in place, we can now prove Theorem 2.

Proof. Assume some nonfaulty party completed the BingoShare protocol. Let t
be the time the first nonfaulty party completes BingoShare, and define ϕ, ϕ̂ ←
Ext(viewt), as defined in Lemma 4. For every k ∈ [0,m], define rk = ϕ(ω−k, ω0).
Before completing the protocol, that nonfaulty party updated αi to be non-⊥,
which in turn means it updated cm after receiving a “commits” message. For
the first part of the property, note that if the dealer is nonfaulty, from Lemma 4,
it is indeed the case that rk = ϕ(ω−k, ω0) = sk.

Turning to the second part of the property, let i be some nonfaulty party that
completed the call to BingoReconstruct(k) for some k ∈ [0,m]. Before doing so,
it must have completed the call to BingoShare and as shown in the termination
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proof, at that time it had already updated its cm variable. This could have
only happened after receiving a “commits” broadcast from the dealer, and from
the agreement property of the broadcast protocol it received the same message
as described above, and updated its cm variable to contain the values defined
above. Party i completed the call to BingoReconstruct(k), so it first saw that
|sharesi,k| = f + 1. Following the exact same logic as in Lemma 5, it must be
the case that yj = ϕ(ω−k, ωj) for every (j, yj) ∈ sharesi,k. Therefore, when i
interpolates the points, it gets the polynomial β−k(Y ) = ϕ(ω−k, Y ) and outputs
β−k(ω0) = ϕ(ω−k, ω0) = rk as required.

B.6 A proof of termination (Theorem 3)

We first formally define termination for a PAVSS as follows:

Definition 7 (Termination). We say that the scheduling in GPAVSS
A (λ) is

valid if the message buffer is empty at the point at which A signals that the
game is over; i.e., all messages were eventually delivered. In every iteration of
the game with valid scheduling, we then require the following three properties to
hold with all but negligible probability:

1. If the dealer is nonfaulty and all nonfaulty parties start Share, then all non-
faulty parties eventually complete Share.

2. If some nonfaulty party completes Share, and all nonfaulty parties start Share
then they all eventually complete Share as well.

3. If all nonfaulty parties complete protocol Share and invoke Reconstruct(k) for
some k ∈ [0,m], they all eventually complete Reconstruct(k).

With this definition in place, we can now prove Theorem 3.

Proof. We start with the second property, assuming that some nonfaulty party
completed BingoShare and showing that the same will eventually hold for any
other nonfaulty party that starts BingoShare, if the commitment scheme satis-
fies interpolation binding and evaluation binding. Before terminating, this party
must have received “done” message from n − f parties, of which at least f + 1
are nonfaulty.

Let i be one of those nonfaulty parties. Before sending the message, i saw
that αi ̸= ⊥. At that time its local cmi variable is equal to cmi = Commit(αi(X);
α̂i(X)). Indeed if a nonfaulty party i updates αi(X), α̂i(X) to values other than
⊥, then either the dealer sends valid α′

i, α
′
i (lines 8 - 11) or i receives 2f + 1

points (v,y, ŷ,π) such that Verify(cm, (ωi, ωvj ), yj , ŷj , πj) = 1 (lines 25 - 33). In
the second case, we have that the correctness of αi(X), α̂i(X) follows from the
interpolation binding of the KZG commitment scheme, as shown in Lemma 1.

Party i updates cmi after receiving a ⟨“commits”,CM⟩ broadcast from the
dealer, setting cm ← PartialEval(CM, {ω1, . . . , ωn}). From the termination and
agreement properties of the broadcast protocol, all nonfaulty parties eventu-
ally receive the same message and update their respective cm variables to the
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same values. Since i updated αi to a value other than ⊥, it sent an “row” mes-
sage to every nonfaulty party. Every nonfaulty j receives that message, sees
that Verify(cm, (i, j), αi(ωj), α̂i(ωj), πα,i,j) = 1 because of the correctness prop-
erty of the commitment scheme, and adds the tuple (ωi, αi(ωj), α̂i(ωj), πα,i,j) to
proofsβ,j . After receiving such a message from the f + 1 nonfaulty parties men-

tioned above,
∣∣pointsβ,j∣∣ = f + 1, so j computes (y1, ŷ1, π1), . . . , (yn, ŷn, πn) ←

GetProofs(proofsβ,j), if it hasn’t done so earlier. Then every nonfaulty j sends a
“column” message to every party. Every nonfaulty party k receives a “column”
message from every nonfaulty party j, and from Lemma 2, k finds that it satis-
fies the required conditions and adds a pair (ωj , βj(ωk)) to pointsα,k and a pair

(ωj , β̂j(ωk)) to pointsα̂,k. After receiving such a message from every nonfaulty

party, it has
∣∣pointsα,j∣∣ ≥ 2f + 1, interpolates the sets pointsα,j and pointsα̂,j

to polynomials, and updates αj and α̂j . In summary, every nonfaulty party j
eventually has αj ̸= ⊥, α̂j ̸= ⊥ and

∣∣proofsβ,j∣∣ = f + 1, so every nonfaulty
party sends a “done” message. Finally every nonfaulty party i receives a “done”
message from at least n − f nonfaulty parties, and has the same conditions as
above, so it completes the protocol. Note that no nonfaulty party completes the
protocol before αi ̸=⊥ and

∣∣proofsβ,i∣∣ = f + 1 so these conditions hold before
they terminate, and thus they indeed send the messages described above before
terminating.

For the first property, assume the dealer is nonfaulty and that all nonfaulty
parties start BingoShare, and show that all nonfaulty parties eventually com-
plete BingoShare if the commitment scheme is correct. In this case, the dealer
honestly runs BingoDeal, which means it samples a pair of bivariate polyno-
mials ϕ, ϕ̂ and for every i ∈ [n] it computes αi, α̂i, where αi(X) = ϕ(X,ωi)

and α̂i(X) = ϕ̂(X,ωi), and computes CM ← Commit(ϕ, ϕ̂). From the termi-
nation and validity properties of the broadcast protocol, every party receives
the “commits” broadcast. Afterwards, every nonfaulty party computes cm ←
PartialEval(CM, {ω1, . . . , ωn}). From the correctness of PartialEval, for every i ∈
[n], cmi = Commit(αi(X); α̂i(X)). The dealer then sends a “polynomials” mes-
sage to every party i with the polynomials αi, α̂i. Upon receiving that message,
every nonfaulty party i updates its local αi, α̂i variables, unless it has done so
earlier. From this point, at least f+1 nonfaulty parties have αi ̸= ⊥ and α̂i ̸= ⊥.
Following the exact same proof of the first property, all nonfaulty parties even-
tually complete the BingoShare protocol.

For the third part of the property, we assume all nonfaulty parties com-
pleted BingoShare and invoked BingoReconstruct(k) for some k ∈ [0,m], and
show that they all complete BingoReconstruct(k) if the commitment scheme is
correct and satisfies interpolation binding. In that case, every nonfaulty party i
computes αi(ω−k), α̂i(ω−k), πα,i,−k ← Eval(αi, α̂i, ω−k) and sends the message
⟨“rec”, k, αi(ω−k), α̂i(ω−k), πα,i,−k⟩ to all parties. Before completing BingoShare,
every nonfaulty i must have αi ̸= ⊥ and α̂i ̸= ⊥. As argued for the second ter-
mination property, this means that i’s local fields also satisfy cmj ̸= ⊥ for every
j ∈ [n]. Now, using identical arguments to the ones in the proof of the second part
of the termination property, every nonfaulty i receives a “rec” message from ev-
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ery nonfaulty j, sees that Verify(cm, (−k, j), αj(ω−k), α̂j(ω−k), πα,j,−k) = 1, and
adds a pair (j, αj(ω−k)) to sharesi,k. At some point while adding such a pair for
every nonfaulty party, i sees that |sharesi,k| = f + 1, interpolates sharesi,k to a
polynomial β−k, outputs β−k(ω0) and terminates.

B.7 A proof of secrecy (Theorem 4)

We first formally define secrecy for a PAVSS. Our definition is simulation-based,
which means that the adversary first picks the secrets and must then provide
them to an oracleOinit. During Share the adversary either takes part in the honest
protocol, with a dealer who knows its provided set of secrets, or interacts with
a simulator who does not. During Reconstruct(k), however, the adversary would
be able to trivially distinguish between parties that have some or no information
about the secret. Our game thus provides the k-th secret to the simulator only
at the point at which the first nonfaulty party invokes Reconstruct(k); i.e., at the
latest possible step before it would become trivial for the adversary to determine
if it were interacting with the simulator or not. Equally, we also need to provide
all the secrets to the simulator if the adversary corrupts the dealer.

Definition 8 (Secrecy). Define a simulator Sim that interacts with A on
behalf of all nonfaulty parties, including the dealer. Then define Advsecrecy

A (λ) =
2Pr[Gsecrecy

A (λ)]− 1, where Gsecrecy
A (λ) is defined as follows, assuming the dealer

is party 1 who deals only after receiving a “start” message from the adversary
and omitting the code for the oracles in which the game does not deviate from
their earlier descriptions:

main GA
secrecy(λ)

b
$←− {0, 1}; S⃗ ← ε⃗

b′
$←− AObuffer(add,·),Obuffer(see),O∗,Ocorr,Oinit,OS ,OR(1λ)

return (b′ = b)

O∗(m)

if (b = 0) run Sim(τs,m)
else run Obuffer(deliver,m)

Oinit(s0, . . . , sm)

Si ← si ∀ i ∈ [m]

Ocorr(i)

if (i = 1) add S1, . . . , Sm to stateSim
remove i from NF
return statei

OR(i, k)
readyRi,k ← true

if (finishedSi = true)
add Sk to stateSim
start Reconstruct(k) for party i

Secrecy holds if for all PPT adversaries A there exists a negligible function ν(·)
such that Advsecrecy

A (λ) < ν(λ).

With this definition in place, we can now prove Theorem 4.

Proof. At a high level, Sim behaves as follows. When it is asked to act as the
dealer, Sim generates and broadcasts a simulated commitment CM. Upon party
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i being corrupted, Sim uses SimOpen to pick polynomials αi(X), α̂i(X) that are
consistent with the partial commitment cmi and any other evaluations given out
for that party (which are selected uniformly at random). For future messages
to party i from some nonfaulty party j, it then simulates “row”, “column”, and
“rec” messages using SimEval, according to the fact that βj(ωi) = αi(ωj).

In more detail, Sim takes some trapdoor τs as input and maintains two sets:
a set C of all corrupted parties and a set I of indices for which at least one
nonfaulty party invoked BingoReconstruct(i). For convenience, when a nonfaulty
party invokes BingoReconstruct(i), we actually add −i to I, since the secret si is
supposed to be equal to ϕ(ω−i, ω0). It also maintains a map M from I to a pair

of polynomials β−i(X), β̂−i(X).

When A delivers a “start” message to the dealer, Sim computes (CMi, di)
$←−

SimCommit() for i ∈ [0, f ] and sets CM ← (CM0, . . . ,CMf ). Sim also computes
(cm, c) ← SimPartialEval(CM, c, {ω1, . . . , ωn}) and the corresponding trapdoor
openings c according to the simulated partial evaluation algorithm in Lemma 7.
It then adds messages to the buffer as if it were broadcasting ⟨“commits”,CM⟩
and sending a “polynomials” message for each i ∈ [n]. Because messages are
encrypted in transit, we can rely on forward secrecy to observe that the simulator
does not need to decide on the actual content of messages sent between nonfaulty
parties until the point at which the recipient of those messages gets corrupted.

When A calls OR(i, k) and sk becomes known to Sim for the first time, Sim
samples β−k uniformly at random from the set of degree-f polynomials such
that β−k(ω0) = sk and β−k(ωj) = αj(ω−k) for all j ∈ C. In choosing β̂−k(X),
Sim must ensure that it is consistent with CM. Thus Sim chooses ŷk randomly,
sets

Q← {ωℓ, βℓ(ω0), β̂ℓ(ω0)}ℓ∈C∪I ∪ {ωk, β−k(ω0), ŷk},

computes

(β−k(ω0), ŝk, π)
$←− SimEval (τs, cm0, d0, ωk, Q)

and sets β̂−k(X) uniformly at random from the set of degree-f polynomials

such that β̂−k(ω0) = ŝk and β̂−k(ωj) = α̂j(ω−k) for all j ∈ C. It then stores

M [k]← β−k(X), β̂−k(X), adds −k to I, and adds a “rec” message to the buffer
for every other party.

When A calls Ocorr on a party i that isn’t the dealer, and before the dealer is
corrupted, Sim defines the evaluation points evalα,i ← {ωj , βj(ωi), β̂j(ωi)}j∈C∪I

and computes αi(X), α̂i(X)
$←− SimOpen(τs, cmi, ci, evalα,i). It then defines the

evaluation points evalβ,i ← {ωj , αj(ωi), α̂j(ωi)}j∈C∪{i}. Then Sim interpolates

to find random βi(X), β̂i(X) such that for every (ωj , yj , ŷj) ∈ evalβ,i we have

that βi(ωj) = yj and β̂i(ωj) = ŷj .

Sim then goes over the sequence of messages that were delivered to i in earlier
calls to O∗ and updates its transcript and internal state as follows:
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– For any message i received from a faulty party,8 Sim honestly updates its
state according to that message.

– If i received a “polynomials” message from a nonfaulty dealer, Sim updates
its state as if it received the message ⟨“polynomials”, αi, α̂i⟩.

– If i received a “row” message from a nonfaulty j, Sim updates its state as if
it received the message ⟨“row”, αj(ωi), α̂j(ωi), πα,j,i⟩, where

(βi(ωj), β̂i(ωj), πα,j,i)
$←− SimEval (τs, cmj , cj , ωi, {ωℓ, βℓ(ωj), βℓ(ωj)}ℓ∈C∪I)

and βi(ωj) = αj(ωi), β̂i(ωj) = αj(ωi).
– If i received a “column” message from a nonfaulty j, Sim updates its state

as if it received the message ⟨“column”, βj(ωi), β̂j(ωi), πβ,j,i⟩, where

(βj(ωi), β̂j(ωi), πβ,j,i)
$←− Eval(αi(X), α̂i(X), ωj).

– If i received a “rec” message for index k from a nonfaulty party j, Sim
retrieves β−k, β̂−k ← M [k]. It then updates its state as if it received the

message ⟨“rec”, k, β−k(ωj), β̂−k(ωj), πα,j,−k⟩ for

(β−k(ωj), β̂−k(ωj), πα,j,−k)
$←− SimEval

(
τs, cmj , cj , ω−k, {ωℓ, βℓ(ωj), β̂ℓ(ωj)}ℓ∈C∪I

)
After making these changes, Sim adds i to C and returns viewi to A.

Going forward, Sim follows these same rules in calls to O∗ for any messages
that are being delivered to a party i ∈ C. If instead a call to O∗ results in
delivering a message to some nonfaulty party i, Sim acts as follows:

– Organizationally, Sim follows the behavior of a nonfaulty party. This means
that if at any point the party should send a “done” message, Sim adds
that message to the buffer, and similarly if the party receives an “row” or
“column” message before receiving the “commits” message it should ignore
them and delay any response until after the “commits” message is delivered.

– If i receives a “polynomials” message, Sim adds an “row” from i to the buffer
for every party.

– If i receives an “row” message from a nonfaulty j, Sim assumes the message
is valid (i.e., it skips the validity check on the evaluation points in line 18
of BingoShare). If instead i receives an “row” message from a faulty j, Sim
performs this validity check before proceeding further. If this results in i
having accepted f +1 “row” messages, Sim adds a “column” message to the
buffer for every party (from party i, if it hasn’t already done so).

– Similarly, if i receives a “column” message from a nonfaulty or faulty j, Sim
respectively skips the check in line 27 of BingoShare or performs it honestly.
If this results in i having accepted 2f + 1 “column” messages, Sim adds an
“row” message to the buffer for every party

8 We identify the faultiness of the sender according to their corruption status at the
step at which their message was added to the buffer, not their status at the step at
which it is delivered.
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To summarize, the messages formed by Sim are as follows:

// Acting as the dealer

1 (CM,d)
$←− SimCommit()

2 ((cm0, cm), (c0, c))← SimPartialEval(CM,d, {ω0, ω1, . . . , ωn})

// Forming “row” messages from nonfaulty j

3 ∀j ∈ C βi(ωj) = αj(ωi), β̂i(ωj) = α̂j(ωi)

4 (βi(ωj), β̂i(ωj), πα,j,i)
$←− SimEval

(
τs, cmj , cj , ωi, {ωℓ, βℓ(ωj), β̂ℓ(ωj)}ℓ∈C∪I

)
// Forming “column” messages from nonfaulty j

5 (αi(ωj), α̂i(ωj), πβ,j,i)
$←− Eval(αi(X), α̂i(X), ωj)

// Forming “rec” messages for k from nonfaulty j
6 sample β−k(X) such that β−k(ω0) = sk and β−k(ωj) = αj(ω−k) ∀j ∈ C
7 ŷk

$←− Fp; Q← {ωℓ, βℓ(ω0), β̂ℓ(ω0)}ℓ∈C∪I ∪ {ωk, β−k(ω0), ŷk}
8 (β−k(ω0), ŝk, π)

$←− SimEval (τs, cm0, c0, ωk, Q)

9 sample β̂−k(X) such that β−k(ω0) = ŝk and β̂−k(ωj) = α̂j(ω−k) ∀j ∈ C
10 β−k(ωj), β̂−k(ωj), πα,j,−k

$←− SimEval(τs, cmj , cj , ω−k, {ωℓ, βℓ(ωj), β̂ℓ(ωj)}ℓ∈C∪I∪{−k})

// Forming corr responses for faulty i

11 evalα,i ← {ωj , βj(ωi), β̂j(ωi)}j∈C∪I

12 αi(X), α̂i(X)
$←− SimOpen(τs, cmi, ci, evalα,i)

13 sample βi(X), β̂i(X) such that βi(ωj), β̂i(ωj) = αj(ωi), α̂j(ωj) ∀j ∈ C ∪ {i}

For any set of secrets s0, . . . , sm, there exist |F|(f+1)(2f+1)−m
polynomials ϕ

such that ϕ(ω−i, ω0) = si for all i ∈ [0,m]. That is because any set of 2f +1−m
additional evaluation on ϕ(X,ω0) uniquely define ϕ(X,ω0), and there are f(2f+
1) additional coefficients to choose independently for the monomials of ϕ(X,Y )

with Y terms. In addition, there are |F|(f+1)(2f+1)
options for choosing ϕ̂ because

there are (f + 1)(2f + 1) different coefficients to choose with no restriction. If
the adversary runs polynomially many concurrent sessions of BingoShare and
BingoReconstruct, the probability that there exist two sessions with the same ϕ
and ϕ̂ polynomials is thus negligible.

If A calls Ocorr on the dealer, then Sim receives s0, . . . , sm and chooses a set
J ⊆ {1, . . . , n} such that J ∩ C = ∅ and |J ∪ C| = f . This is always possible
since C contains at most f indices. If the dealer did not send any message
before being corrupted, Sim updates its state as if it had s0, . . . , sm as input
and returns from the Ocorr call. Otherwise, Sim would have already acted as
the dealer and computed cmi, ci for every i ∈ {0, . . . , n} using SimPartialEval.

It then defines evalα,i ← {ωj , βj(ωi), β̂j(ωi)}j∈C∪I for every i ∈ J . In addition,
for every j ∈ {−m, . . . , 0} \ I Sim defines βj(ω0) = s−j , uniformly samples a
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value β̂j(ω0)
$←− F and sets evalα,0 ← {ωj , βj(ω0), β̂j(ω0)}j∈C∪{−m,...,0}. After

computing the eval sets, Sim computes αi, α̂i
$←− SimOpen(τs, cmi, ci, evalα,i) for

every i ∈ J ∪ {0}. Following that, Sim interpolates {(ωi, αi)}i∈C∪J∪{0} to the
unique bivariate polynomial ϕ of degree 2f in X and f in Y such that ∀j ∈
C ∪ J ∪ {0} ϕ(X,ωj) = αj(X). Similarly, it interpolates {(ωi, α̂i)}i∈C∪J∪{0}

to ϕ̂. Sim then updates the dealer’s transcript and internal state as if it sent
messages corresponding to having sampled ϕ and ϕ̂ in BingoDeal. It then updates
all nonfaulty parties’ transcript and internal state as if they received correct
messages from the dealer, and then acted according to BingoShare and BingoDeal
throughout the rest of the protocol. From this point on, Sim then honestly follows
the Bingo protocol and updates the transcripts and states of nonfaulty parties
accordingly. Anytime the adversary calls Ocorr after corrupting the dealer, Sim
can then immediately return the associated state.

We now need to argue that interactions with Sim are indistinguishable from
interactions with the honest challenger. To do this, we define G0 as the game
described above; i.e., the game in which A is interacting with Sim. We then
define the following series of games.

G1. We first consider the bad event in which there exists an “row”, “column”,
or “rec” message sent from a nonfaulty party to a nonfaulty party such that the
Verify checks would fail; in this case the honest party would not proceed but
the simulator would (as it skips these checks), thus allowing the adversary to
distinguish between them. We define G1 as the game in which this bad event
does not occur. The only way a nonfaulty party could send a message that
didn’t verify would be for it to have interpolated a polynomial that is different
from the one chosen for it by the dealer, which implies the ability to break
evaluation binding. Using “row” messages as an example (the argument is the
same for “column” and “rec” messages), the only way for a nonfaulty party j
to send a message that does not pass the check in line 18 is for it to have αj , α̂j
different from the polynomials ϕ(X,ωj), ϕ̂(X,ωj). To have interpolated these
polynomials, it must have received a “column” message from a party ℓ such
that Verify(cm, (ℓ, j), y, ŷ, πβ,ℓ,j) = 1 but such that y, ŷ ̸= ϕ(ωℓ, ωj), ϕ̂(ωℓ, ωj).
An adversary that outputs

cm, (ℓ, j), (y, ŷ, πβ,ℓ,j),Eval(ϕ(X,ωj), ϕ̂(X,ωj), ωℓ)

can thus win at evaluation binding, meaning Pr[G1]−Pr[G0] < Adveval-binding
B1

(λ).

G2. Case 1, if the dealer is never corrupted: Instead of forming CM using
SimCommit(), G2 forms ϕ(X,Y ) and ϕ̂(X,Y ) as in BingoDeal; i.e., it samples
ϕ so that ϕ(ω−i, ω0) = si for all i ∈ [0,m]. This means that G2 knows the secrets
s0, . . . , sm in advance where G1 does not. This means changing lines 1,2 as
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0.5 uniformly sample ϕ, ϕ̂ s.t. ϕ(ω−i, ω0) = si ∀i ∈ [0,m]

1 (CM,d)← SimCommit() CM← Commit(ϕ; ϕ̂)

2 ((CM0, cm), (c0, c))← SimPartialEval(CM,d, {ω0, ω1, . . . , ωn})
(cm← PartialEval(CM, {ω0, ω1, . . . , ωn})

Because the game now knows the polynomials for every participant, it also no
longer needs to compute SimOpen and can instead compute the evaluation points
honestly when giving input to SimEval or sampling βi(X), β̂i(X). More precisely,
it can omit lines 3,6-9,11-13, compute line 5 identically, and can change lines 4
and 10 to be

// Forming “row” messages from nonfaulty j

4 (βi(ωj), β̂i(ωj), πα,j,i)
$←− SimEval (τs, cmj , cj , ωi, {ωℓ, βℓ(ωj), βℓ(ωj)}ℓ∈C∪I)

(βi(ωj), β̂i(ωj), πα,j,i)
$←− Eval

(
τs, cmj , ωi, βi(ωj), β̂i(ωj)

)
// Forming “rec” messages for k from nonfaulty j

10 πα,j,−k
$←− SimEval(τs, cmj , cj , ω−k, {ωℓ, βℓ(ωj), β̂ℓ(ωj)}ℓ∈C∪I∪{−k})

πα,j,−k
$←− Eval(cmj , ω−k, β−k(ωj), β̂−k(ωj))

This game is indistinguishable from G1 because of the ability to simulate com-
mitments, openings, and evaluations. Note that in G2, all opened values are
consistent with the degree 2f by f polynomials ϕ, ϕ̂, and thus their joint dis-
tribution is defined by the distribution over ϕ, ϕ̂. Any such polynomial defines
a uniform distribution on each row polynomial, α, or column polynomial, β,
given that it is consistent with the previously sampled polynomials, and sam-
pling rows and columns in such a way yields the same distribution over ϕ, ϕ̂. In
G1, each such α and β are sampled uniformly, under the condition that they are
consistent with previously defined α and β polynomials, and overall points are
only provided on f +1 polynomials β and 2f +1 polynomials α. In other words,
sampling α and β polynomials in this way yields the same joint distribution over
the evaluations. This means that Pr[G1]− Pr[G2] = 0.

The game G2 is now identical to the honest game, so we have that

Advsecrecy
A (λ) <Adveval-binding

B1
(λ) +Advsim

B2
(λ).

Case 2, if the dealer is corrupted at some point: If the dealer is corrupted
before ever sending a message, then the simulator perfectly simulates a run of
the protocol because all parties send correctly formed messages according to
the Bingo protocol and update their transcript and state according to those
messages.

If the dealer is corrupted after sending a message, then Sim computed cm0, . . . ,
cmn and then continued the simulation. Before corrupting the dealer, the argu-
ments are identical to the ones above. After corrupting the dealer, Sim chooses
a set calls SimOpen on f + 1 different partial commitments cmi in a way con-
sistent with the view the adversary has seen up until that point. In addition,
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for the commitment cm0, it also does so in a way consistent with the secrets
s0, . . . , sm. From Lemma 3, the value CM computed by Sim is a commitment to
ϕ, ϕ̂. Following similar arguments to the ones described above, the distribution
of ϕ, ϕ̂ defined by Sim’s behaviour is the uniform distribution on all bivariate
polynomial of the correct degrees, given that they are consistent with the adver-
sary’s view and with s0, . . . , sm. Therefore, the dealer’s transcript and state are
distributed correctly. In addition, the simulated nonfaulty parties send messages
identical to the ones they would have sent in the Bingo protocol, as instructed
by the simulator, and thus their simulation is perfect as well.

B.8 A proof of asymptotic efficiency (Theorem 5)

Proof. The BingoShare protocol starts with a single broadcast of O(n) group
elements by the dealer, each consisting of O(λ) words. Using the reliable broad-
cast protocol of [28], the total number of words and messages sent by nonfaulty
parties throughout the protocol is O(λn2). The BingoShare protocol then pro-
ceeds with the dealer sending 2 polynomials to every party. Each polynomial can
be described in f + 1 field elements, totalling in O(λn2) words and O(n) mes-
sages. Throughout the protocol, every party i might send “row” and “column”
messages to every party j. Each such message contains O(1) elements, each
consisting of O(λ) words, meaning that all of those messages total in O(λn2)
messages and words sent by all nonfaulty parties. Finally, every party can send
a “done” message to every other party, totalling in O(n2) words and messages.
Overall, we get that the BingoShare protocol requires O(λn2) words and O(n2)
messages to be sent by nonfaulty parties.

If the dealer is nonfaulty, then it starts by broadcasting a “commits” message
and sending every party a “polynomials” message. Every nonfaulty party i re-
ceives those messages in O(1) rounds and updates αi, α̂i to values other than ⊥,
if they haven’t done so earlier. They then send “row” message to all nonfaulty
parties. As shown in Theorem 3, after receiving those “row” messages, every
nonfaulty party i has

∣∣proofsβ,i∣∣ = f + 1. Every nonfaulty party then sends a
“done” messages. Every nonfaulty i then receives those “done” messages in 1
more round, sees that it received “done” messages from n − f parties and has
αi, α̂i ̸= ⊥,

∣∣proofsβ,i∣∣ = f + 1 and terminates. In addition, if some nonfaulty
party completes the protocol, it received “done” messages from n − f parties,
with f + 1 of those parties being nonfaulty. Those nonfaulty parties only send
“done” messages if they see that αi, α̂i ̸= ⊥. Note that every nonfaulty party
completes the reliable broadcast protocol of [28] O(1) rounds after the first non-
faulty does. Following the same arguments as the ones in Theorem 3, every
nonfaulty party receives a “row” message from those f + 1 nonfaulty parties in
a round at most, adds a tuple to proofsβ,i after each such message, and sends
a “column” message. A round after that, every nonfaulty i receives a “column”
message from every nonfaulty party, and interpolates α and α̂ in line 31. Every
nonfaulty party then sees that αi ̸= ⊥, α̂i ̸= ⊥ and

∣∣proofsβ,i∣∣ = f + 1 and
sends a “done” message. Finally, one round later, every party receives at least
n − f done messages from the nonfaulty parties and has αi ̸= ⊥, βi ̸= ⊥, and
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completes the protocol. In total, every nonfaulty party terminates O(1) rounds
after the first nonfaulty party terminates.

The only messages sent in each invocation of BingoReconstruct(k) are “rec”
messages. Each nonfaulty party sends one such message to all parties, contain-
ing O(1) elements, each consisting of O(λ) words. This totals in O(λn2) words
and messages sent by all nonfaulty parties in BingoReconstruct(k). Sending this
message also requires only a single round.

C An Adaptively Secure VABA Protocol

To build up to a VABA protocol, we start with weak leader election, following
the same outline as Abraham et al. [3]. In a weak leader election protocol, all
parties aim to elect a single party. The protocol is “weak” in the sense that there
is only a constant probability p that all parties elect the same nonfaulty party.
With the remaining 1−p probability, a faulty party might be elected, or different
parties might output different leaders. More formally:

Definition 9. In a weak leader election protocol, there are n parties, and each
party i outputs some value vi ∈ [n]. A weak leader election protocol has the
following properties if all nonfaulty parties participate in it:

– p-Correctness. All nonfaulty parties output a value i ∈ [n] such that party
i is nonfaulty with probability p or greater.

– Termination. All nonfaulty parties output some value and terminate.

A common approach based on secret sharing is as follows: First, every party
shares a secret with every other party. Each party waits to complete f + 1 in-
vocations of the share protocol, “attaches” those secrets to itself, and informs
all other parties about its attached secrets. Afterwards, the parties start recon-
structing the secrets. Finally, the leader is the party whose secrets have the
largest sum.

Using this protocol blueprint, Bingo, and the Gather protocol by Abraham
et al. [3] with the external validity function checkValidity defined in Equation 1,
we specify in Algorithm 8 a weak leader election protocol.

Initially, every party samples a random secret for every other party, and
shares them all using BingoShare. Parties then wait to complete all the BingoShare
calls for f+1 different dealers before attaching that set of dealers to themselves.
Afterwards, each party uses the Gather protocol to output a set of attached deal-
ers. This set of attached dealers must be one for which all BingoShare calls are
guaranteed to terminate. Parties send each other “attach” messages, requesting
signatures on the set attached of attached dealers. Nonfaulty parties reply with
such a signature only after seeing that all BingoShare calls have been completed
for each party in attached, guaranteeing (by termination) that every nonfaulty
party eventually completes these calls as well.

After gathering f + 1 signatures in sigs for their set of attached dealers,
attached, each party calls Gather with input (attached, sigs). By the properties of
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the Gather protocol, all nonfaulty parties eventually complete this call and output
a set {(j, (attachedj , sigsj))} such that party j input the set (attachedj , sigsj) to
the protocol. In addition, this set is externally valid, which means (following
Equation 1) that there are at least f+1 dealers in attachedj and valid signatures
in sigsj , and there exists a common core of n− f pairs (j, (attachedj , sigsj)) that
all nonfaulty parties include in their output.

Using these properties, after completing the Gather call and outputting some
set X, every party broadcasts the indices I = {j | ∃(j, (attachedj , sigsj)) ∈ X},
which allows every other party to call GatherVerify and outputs the original
set X. Afterwards, for every (j, (attachedj , sigsj)) ∈ X, every party waits to
complete the BingoShare calls for all dealers in attachedj , and then participates
in reconstructing the sum of the j-th secrets shared by the dealers in attachedj .
The reconstructed value is then associated with party j. Finally, after completing
the Gather protocol with some set X and having some value associated with
every party j such that (j, (dealersj , sigsj)) ∈ X, each party checks which of
those parties has the maximal associated value and picks it as leader.

The leader election protocol described in Algorithm 8 resembles the proposal
election protocol described by Abraham et al., with two important conceptual
differences. First, our leader election protocol uses an interactive packed AVSS
protocol instead of a non-interactive PVSS protocol. This means that in order
to make sure that a given packed AVSS instance will indeed complete, parties
have to check that at least one nonfaulty party completed it. This is done by
collecting signatures from at least f +1 parties, as described above. Second, the
protocol of Abraham et al. relied on parties being able to aggregate f +1 PVSS
transcripts and then forward the aggregated transcript to all parties. Parties
then reconstruct the aggregated secret by computing their share of the secret
and forwarding it to everybody. In our protocol, there is no transcript that can
be forwarded to all parties. Instead, parties inform each other of the dealers
they “attached” to themselves. Parties then locally aggregate shares for the
appropriate secrets, before reconstructing them using BingoReconstructSum.

Due to the similarities of our protocol with the one due to Abraham et al.,
its security follows naturally from their proof. Intuitively, the properties of the
Gather protocol guarantee that every nonfaulty party sees the same set dealersj
associated with j. Since no nonfaulty party starts reconstructing the sum of
secrets associated with party j before completing GatherVerify, no faulty party
learns anything about any of the values shared by nonfaulty parties for party j.
Party j has to choose at least one nonfaulty dealer to add to dealersj , so the sum
of the values shared by these is uniformly distributed and cannot be biased by
j. Therefore, each party has the same probability of having the maximal value
overall. If the maximal value ends up being one associated with a nonfaulty party
j in the common core of the Gather protocol, then all nonfaulty parties see that
party in their outputs from the Gather protocol. They will then see that j has the
maximal value and elect it as leader. The common core contains at least n − f
tuples, so at least n− 2f ≥ n

3 of the parties in it are nonfaulty. All parties thus
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elect the same nonfaulty leader with at least a n
3 ·

1
n = 1

3 probability, meaning
we achieve 1

3 -correctness as desired.
The protocol consists of a constant number of all-to-all communication rounds

with messages of size O(λn) words, as well as O(n) calls to BingoShare, O(n)
calls to BingoReconstructSum, a call to Gather with inputs of size O(λn), and
a single broadcast by each party of messages of size O(n) words. This yields a
word complexity of O(λn3) overall and a round complexity of O(1).

In a proposal election (PE) protocol, every party i has an input xi. Parties are
then required to all output the same xi such that i is nonfaulty with probability p
or greater. In addition, parties need to be able to output proofs that their output
is correct, and verify those proofs. The protocol described in Algorithm 8 can
be transformed into a proposal election protocol by parties receiving a proposal
propi as input and calling Gather with input (propi, attachedi, sigsi). Then instead
of outputting the identifier i of the elected party, they can output its proposal
propi.

Using this result, it is possible to construct an adaptively secure Validated
Byzantine agreement (VABA) protocol.

Definition 10 (VABA). Let V be a set of possible inputs, and let validate :
V → {true, false} be an external validity function. In a validated asynchronous
Byzantine agreement (VABA) protocol, every party i has an externally valid
input xi, and they each output some value yi ∈ V . A VABA protocol has the
following properties if all nonfaulty parties participate in it:

– Correctness. All nonfaulty parties that complete the protocol output the
same value.

– Validity. If a nonfaulty party outputs a value, then it is externally valid.
– p-Quality. With probability p or greater, all nonfaulty parties output the

value xi for some nonfaulty i.
– Termination. All nonfaulty parties output a value and complete the proto-

col.

In particular, using the adaptively secure PE protocol described above in the
NWH protocol of Abraham et al. (which only assumes the existence of a PKI)
yields an adaptively secure VABA protocol with O(λn3) word complexity.

D Security Proofs for Our ADKG

D.1 A proof of robustness (Theorem 7)

To aid us in proving robustness, we first prove that the properties that hold for
field elements in BingoShare also hold for group elements containing the sum of
these elements in the exponent.

Lemma 8. Let dealers be a set of dealers for which at least one nonfaulty party
completed an invocation of BingoShare, and for every i ∈ dealers let ri,0 be the
value r0 defined in the correctness property of Bingo for the invocation with i as
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dealer. If all nonfaulty parties invoke BingoSumExpAndRec, then each nonfaulty
i outputs p(ωi), g

∑
j∈dealers rj,0 and terminates, with p being a degree-2f polynomial

with p(ω0) =
∑
j∈dealers rj,0.

Proof. This proof deals only with the maximum possible degree 2f . As noted
in Remark 1, it is possible to run BingoShare with degree f +m in X by sharing
m + 1 secrets instead of f + 1 and parties waiting for f +m + 1 shares before
interpolating. This allows for p being a polynomial of any degree t = f +m such
1 ≤ m ≤ f .

First we show that all nonfaulty parties will eventually complete the proto-
col and output some value. For every i ∈ dealers define ϕi, ϕ̂i as in Lemma 4
for the BingoShare invocation with i as dealer and let CMi be the commit-
ment CM broadcast by i. As shown in the proof of correctness, for every such i,
ri,0 = ϕi(ω0, ω0). For every i ∈ [n], j ∈ dealers, let cmi,j be cmi in the BingoShare
invocation with j as dealer. From Lemma 4, for every j ∈ dealers, CMj =

Commit(ϕj(X,Y ); ϕ̂j(X,Y )). From the construction of PartialEval, for every j ∈
dealers, cmj,0 ← PartialEval(CMj , {ω0}) satisfies cmj,0 = KZG.Commit(ϕ(X,ω0);

ϕ̂(X,ω0)). From the homomorphic nature of the KZG commitment scheme, for
every i ∈ [n],

cm0 =
∏

j∈dealers

cmj,0

=
∏

j∈dealers

Commit(ϕj(X,ω0); ϕ̂j(X,ω0)

= Commit
( ∑
j∈dealers

ϕj(X,ω0);
∑

j∈dealers

ϕ̂j(X,ω0)
)
.

From Lemma 2, for every nonfaulty i, ∀j ∈ dealers KZG.Verify(cm0,j , ω0, yi,j , ŷi,j ,
πi,j) = 1, and from the homomorphic nature of the KZG commitment scheme,
KZG.Verify(

∏
j∈dealers cm0,j , ω0,

∑
j∈dealers yi,j ,

∑
j∈dealers ŷi,j ,

∏
j∈dealers πi,j) = 1.

Note that for every nonfaulty party i, cm0 =
∏
j∈dealers cm0,j , Yi = g

∑
j∈dealers yi,j ,

Ŷi = g
∑

j∈dealers ŷi,j and πi =
∏
j∈dealers πi,j , and thus, from the construction of

Verify′, Verify′(cm0, ω0, Yi, Ŷi, πi) = 1. Every nonfaulty party will eventually re-
ceive “key share” messages sent by each nonfaulty party, see that its contents
pass verification, and add a tuple to shares. After adding such a tuple for all
n− f ≥ 2f + 1 nonfaulty parties, every nonfaulty parties computes pk, outputs
a value, and terminates.

Now we show that the output of the nonfaulty parties satisfies the conditions
of the lemma. Following the same argument as the one in Lemma 5, from the
extractability of the proofs of knowledge and the evaluation binding of KZG,
nonfaulty parties only add tuples of the form (ωk, g

∑
j∈dealers ϕj(ω0,ωk)) to sharesi.

Therefore, when calling EvalExp on sharesi after adding 2f + 1 such shares,
nonfaulty parties output pk = g

∑
j∈dealers ϕj(ω0,ω0) = g

∑
j∈dealers rj,0 .

Finally, define p(X) =
∑
j∈dealers ϕj(X,ω0). By definition, we know that

p(ω0) =
∑
j∈dealers ϕj(ω0, ω0) =

∑
j∈dealers rj,0, and since each of the polyno-
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mials ϕj is of degree 2f , so is p. All that is left to show is that every nonfaulty
party i outputs p(ωi). For every nonfaulty i and j ∈ dealers, from Lemma 5,
yk = ϕj(ωi, ωk) for every (ωk, yk, ŷk, πk) ∈ proofsβ,i,j . Therefore, by construction
GetProofs(proofsβ,i,j , {ω0}) outputs yi,j , ŷi,j , πi,j such that yi,j = ϕj(ωi, ω0). Ev-
ery nonfaulty party i outputs ski =

∑
j∈dealers yi,j =

∑
j∈dealers ϕj(ωi, ω0) =

p(ωi), as required.

We now provide a proof of Theorem 6.

Proof. Every nonfaulty party i starts the ADKG protocol by uniformly sampling
f+1 values r0,i, . . . , rf,i, calling BingoShare, and participating in BingoShare with
j as dealer for every j ∈ [n]. We will define ri to be r0,i for every i ∈ [n]. From the
termination property of the BingoShare protocol, all nonfaulty parties eventually
complete the BingoShare invocations with nonfaulty dealers. This means that
eventually every nonfaulty i will add j to dealersi for every nonfaulty j. After
adding f + 1 such indices, party i sets propi and sends a “proposal” message
to all parties. Because party i completed the BingoShare invocation with j as
dealer for every j ∈ propi, by the termination property of BingoShare every other
nonfaulty party will do so as well.

Every nonfaulty party will eventually receive party i’s “proposal” message
and, as stated above, complete the BingoShare invocation with j as dealer for
every j ∈ propi. It then replies with a “signature” message and a signature
σj on propi. Party i eventually receives such a “signature” message from every
nonfaulty party and adds its valid signature to its sigsi set. After adding f + 1
such signatures to its sigsi set, every nonfaulty party i calls VABA. Every such
party i sets propi to be a set of f +1 dealers, adds only valid signatures on propi
to sigsi, and invokes VABA after having |sigsi| = f + 1. In other words, every
nonfaulty party eventually invokes VABA with an externally valid input.

By the termination property of the VABA protocol, all nonfaulty parties
eventually complete the protocol with some output. By the correctness of the
VABA protocol, all these parties have the same output (prop, sigs), and by
the validity of the VABA protocol this output is externally valid, meaning
there are signatures from f + 1 parties on the set prop, one of which must
have been nonfaulty. Nonfaulty parties only send such signatures in line 12
if they completed BingoShare for every j ∈ prop. Since there is at least one
nonfaulty party that completed the BingoShare invocation with j as dealer for
every j ∈ prop, from the termination property of the BingoShare protocol, all
nonfaulty parties will eventually complete those BingoShare invocations as well
and invoke BingoSumExpAndRec in line 20. From Lemma 8 they will complete
BingoSumExpAndRec and output the same value pk (the first requirement of ro-
bustness) and output shares that can be reconstructed into the unique sk for pk
(the second requirement of robustness).
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Algorithm 8 LeaderElection()

1: dealersi ← ∅, attachedi ← ∅, sigsi ← ∅, Xi ← ∅, evalsi ← ∅
2: (r1, . . . , rn)

$←− Fn

3: call BingoShare as dealer three times: sharing r1, . . . , rf+1, sharing rf+2, . . . , r2f+2,
and sharing r2f+3, . . . , rn

4: participate in all three sessions of BingoShare with j as dealer for every j ∈ [n]
5: upon completing all three BingoShare calls with j as dealer, do
6: dealersi ← dealersi ∪ {j}
7: if |dealersi| = f + 1 then
8: attachedi ← dealersi
9: send ⟨“attach”, attachedi⟩ to all parties

10: upon receiving ⟨“attach”, attachedj⟩ from party j, do
11: upon attachedj ⊆ dealersi, do
12: send ⟨“signature”, Sign(ski, attachedj)⟩ to party j

13: upon receiving ⟨“signature”, σj⟩ from j, do
14: if attachedi ̸= ∅ and Verify(pkj , σj , attachedi) = 1 then
15: sigsi ← sigsi ∪ {(j, σj)}
16: if |sigsi| = f + 1 then
17: call Gatheri((attachedi, sigsi)) with external validity function

checkValidity

18: upon Gatheri outputting the set X = {(j, (attachedj , sigsj))}, do
19: Xi ← X
20: Ii ← {j|∃(j, (attachedj , sigsj)) ∈ Xi}
21: broadcast ⟨“indices”, Ii⟩
22: upon receiving the first ⟨“indices”, Ij⟩ message from j, do
23: upon GatherVerifyi(Ij) outputting Xj and Gatheri outputting some value, do
24: for all (k, (attachedk, sigsk)) ∈ Xj do
25: upon all BingoShare calls terminating with ℓ as dealer for every ℓ ∈

attachedk, do
26: invoke BingoReconstructSum(attachedk, k)

27: upon BingoReconstructSum(attachedk, k) terminating with output rk, do
28: evalsi ← evalsi ∪ {(k, rk)}
29: upon ∀(k, dealersk) ∈ Xi ∃(k, evaluationk) ∈ evalsi and Xi ̸= ∅, do
30: ℓ← argmaxk{evaluationk|(k, (propk, vrf dkgk)) ∈ Si}
31: output ℓ and terminate
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