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Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling 
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

! First show a generic construction based solely on signatures
! Then propose new definition(s)
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An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document, 
but they don’t trust each other
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Definitions for VES: 
!  Unforgeability 
!  Opacity 
!  Extractability
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Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

! Opacity: An adversary can’t create a signature given just VES

! Extractability: An adversary can’t create valid VES for which 
arbitration fails

!6

ω = VESign(skA,apk,m)

ω = Sign(skA,m)σ = A

ω
⊥

skA
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Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space 
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

! There are two signatures, and Verify checks for both

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥) T(m,apk,1,ω)

Sign VESign Resolve

DNV
YDV
DNV
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Resolution independence

! The problem with the signature-based construction: Bob got a different 
object from Alice than from the arbiter!
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Sign(skA,m) Resolve(ask,pkA,ω,m)
DNV
YDV

! Resolution independence: the distributions {Sign(sk,m)} and 
{Resolve(ask,pk,ω,m)} are identical
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Separating our construction from existing ones

! Signature construction is not resolution independent: σ vs. (apk,ω,ω′)

! But it is satisfied by all existing VES constructions 
! [BGLS03] uses bilinear groups, BLS signatures, deterministic Resolve
! [LOSSW05] uses bilinear groups, Waters signatures, randomized Resolve
! [R09] uses RSA groups and signatures, deterministic Resolve

!12



#RSAC

Resolution duplication

!13



#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening

!13



#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except 

the arbiter can extract σ′ from the same distribution (by resolution 
independence)

!13



#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except 

the arbiter can extract σ′ from the same distribution (by resolution 
independence)

! Not quite encryption: σ′ might be different from σ

!13



#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except 

the arbiter can extract σ′ from the same distribution (by resolution 
independence)

! Not quite encryption: σ′ might be different from σ

!13

! Resolution duplication requires: (1) resolution independence, (2) 
deterministic Resolve, and (3) that there exists an algorithm Extract 
such that Extract(sk,m,r) = Resolve(ask,pk,VESign(sk,apk,m;r),m)
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Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so 
that no one can pull out Sign(sk,m) from ω (by opacity), except the 
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

! This lets us “encrypt” signatures, but we want to encrypt arbitrary bits
! Adapt Goldreich-Levin trick [GL89]; show that it is hard to predict 

(compute) <σ,r> = ∑ σi⋅ri mod 2 given just ω and r
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σ=Resolve(ask,pk,ω,0)

The same by  
resolution duplication!
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Constructing PKE with resolution duplication

! Interestingly, resolution duplication contributed to the correctness of 
the encryption scheme rather than its security

! IND-CPA security follows fairly directly from opacity

!16

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m
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Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from 

existing ones
! Demonstrated how stronger resolution duplication could be used to 

construct public-key encryption

! Are VES just misnamed?  Or would applications fail if encryption part 
were missing?
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