
SESSION ID:

Sarah Meiklejohn
Graduate researcher 

UC San Diego 

Rethinking Verifiably Encrypted
Signatures: A Gap in Functionality and
Potential Solutions

•cryp-r02

#RSAC

Models for cryptographic primitives

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

! First show a generic construction based solely on signatures

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

! First show a generic construction based solely on signatures
! Then propose new definition(s)

!2

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

A

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

A

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

A

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

Bc

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

A

c

Definitions for VES:
! Unforgeability
! Opacity
! Extractability

#RSAC

Verifiably encrypted signatures [BGLS03]

!5

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k) (pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)

σ

= Sign(skB,m)σ = B

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ

= Sign(skB,m)σ = B

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ

= Sign(skB,m)σ = B ω

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ←Resolve(ask,pkA,ω,m)

σ

= Sign(skB,m)σ = B ω

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ←Resolve(ask,pkA,ω,m)

σ

= Sign(skB,m)σ = B ω

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

!6

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:

!6

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

!6

ω = VESign(skA,apk,m)

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

! Opacity: An adversary can’t create a signature given just VES

!6

ω = VESign(skA,apk,m)

ω = Sign(skA,m)σ = A

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

! Opacity: An adversary can’t create a signature given just VES

! Extractability: An adversary can’t create valid VES for which
arbitration fails

!6

ω = VESign(skA,apk,m)

ω = Sign(skA,m)σ = A

ω
⊥

skA

A signature-based VES

#RSAC

Constructing VES with just signatures

!8

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

!8

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

Sign VESign Resolve

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

T(m,⊥,⊥,⊥)

Sign VESign Resolve

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥)

Sign VESign Resolve

DNV

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥) T(m,apk,1,ω)

Sign VESign Resolve

DNV
YDV
DNV

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

! There are two signatures, and Verify checks for both

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥) T(m,apk,1,ω)

Sign VESign Resolve

DNV
YDV
DNV

#RSAC

Security of signature-based construction

!9

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES

!9

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES

!9

T(m,apk,0,⊥)

DNV

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

DNV

T(m,apk,1,ω)

T(m,apk,0,⊥)

DNV
YDV

Resolution
independence

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

Sign(skA,m)

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

Sign(skA,m) Resolve(ask,pkA,ω,m)
DNV
YDV

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

Sign(skA,m) Resolve(ask,pkA,ω,m)
DNV
YDV

! Resolution independence: the distributions {Sign(sk,m)} and
{Resolve(ask,pk,ω,m)} are identical

#RSAC

Separating our construction from existing ones

!12

#RSAC

Separating our construction from existing ones

! Signature construction is not resolution independent: σ vs. (apk,ω,ω′)

!12

#RSAC

Separating our construction from existing ones

! Signature construction is not resolution independent: σ vs. (apk,ω,ω′)

! But it is satisfied by all existing VES constructions
! [BGLS03] uses bilinear groups, BLS signatures, deterministic Resolve
! [LOSSW05] uses bilinear groups, Waters signatures, randomized Resolve
! [R09] uses RSA groups and signatures, deterministic Resolve

!12

#RSAC

Resolution duplication

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except

the arbiter can extract σ′ from the same distribution (by resolution
independence)

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except

the arbiter can extract σ′ from the same distribution (by resolution
independence)

! Not quite encryption: σ′ might be different from σ

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except

the arbiter can extract σ′ from the same distribution (by resolution
independence)

! Not quite encryption: σ′ might be different from σ

!13

! Resolution duplication requires: (1) resolution independence, (2)
deterministic Resolve, and (3) that there exists an algorithm Extract
such that Extract(sk,m,r) = Resolve(ask,pk,VESign(sk,apk,m;r),m)

#RSAC

Constructing PKE with resolution duplication

!14

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

ω=VES(sk,apk,m;r)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

ω=VES(sk,apk,m;r) σ=Resolve(ask,pk,ω,m)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

! This lets us “encrypt” signatures, but we want to encrypt arbitrary bits

!14

ω=VES(sk,apk,m;r) σ=Resolve(ask,pk,ω,m)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

! This lets us “encrypt” signatures, but we want to encrypt arbitrary bits
! Adapt Goldreich-Levin trick [GL89]; show that it is hard to predict

(compute) <σ,r> = ∑ σi⋅ri mod 2 given just ω and r

!14

ω=VES(sk,apk,m;r) σ=Resolve(ask,pk,ω,m)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

!15

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)

!15

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

!15

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

!15

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

!15

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Resolve(ask,pk,ω,0)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Resolve(ask,pk,ω,0)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Resolve(ask,pk,ω,0)

The same by
resolution duplication!

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

!16

#RSAC

Constructing PKE with resolution duplication

! Interestingly, resolution duplication contributed to the correctness of
the encryption scheme rather than its security

!16

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

#RSAC

Constructing PKE with resolution duplication

! Interestingly, resolution duplication contributed to the correctness of
the encryption scheme rather than its security

! IND-CPA security follows fairly directly from opacity

!16

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

Conclusions

#RSAC

Conclusions and open problems

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from

existing ones

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from

existing ones
! Demonstrated how stronger resolution duplication could be used to

construct public-key encryption

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from

existing ones
! Demonstrated how stronger resolution duplication could be used to

construct public-key encryption

! Are VES just misnamed? Or would applications fail if encryption part
were missing?

!18

