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Abstract. In this paper, we introduce a distributed key generation
(DKG) protocol with aggregatable and publicly-verifiable transcripts.
Compared with prior publicly-veriable approaches, our DKG reduces
the size of the final transcript and the time to verify it from O(n2)
to O(n logn), where n denotes the number of parties. As compared
with prior non-publicly-verifiable approaches, our DKG leverages gossip
rather than all-to-all communication to reduce verification and commu-
nication complexity. We also revisit existing DKG security definitions,
which are quite strong, and propose new and natural relaxations. As a
result, we can prove the security of our aggregatable DKG as well as
that of several existing DKGs, including the popular Pedersen variant.
We show that, under these new definitions, these existing DKGs can be
used to yield secure threshold variants of popular cryptosystems such as
El-Gamal encryption and BLS signatures. We also prove that our DKG
can be securely combined with a new efficient verifiable unpredictable
function (VUF), whose security we prove in the random oracle model.
Finally, we experimentally evaluate our DKG and show that the per-
party overheads scale linearly and are practical. For 64 parties, it takes
71 ms to share and 359 ms to verify the overall transcript, while for 8192
parties, it takes 8 s and 42.2 s respectively.

1 Introduction

System designers who strive to remove single points of failure often rely on tools
provided by threshold cryptography [22, 60] and secure multi-party computa-
tion [20, 35]. In this paper, we study distributed key generation (DKG) [32, 54],
a method from threshold cryptography that often plays an essential role during
the setup of distributed systems, including Byzantine consensus [6, 66], time-
stamping services [14, 63], public randomness beacons [30, 61], and data archive
systems [46, 65]. A DKG enables a set of parties to generate a keypair such that
any sufficiently large subset can perform an action that requires the secret key
while any smaller subset cannot. To achieve this, a DKG essentially turns each
party into a dealer for a verifiable secret sharing (VSS) scheme [19, 26, 55]. This
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process yields a single collective public key, generated in a distributed manner,
with each party keeping a share of the secret key for themselves.

Current DKGs [28, 32, 33, 54] commonly require that all n parties broadcast
O(n)-sized messages that are then used by each party to verify the shares they
received from their peers. This results in each party communicating O(n2) sized
messages via broadcast. While some DKGs have O(n) communication and veri-
fication per party, they rely on constant-sized polynomial commitment schemes
that require trusted setup [44, 43]. In this work, we show how to reduce the
size of the final DKG transcript to O(n) by making the parties’ contributions
aggregatable. This enables us to relay (partial) transcripts in an efficient and re-
silient manner, e.g., over gossip networks, ensuring that transcripts do not grow
in size since aggregation can be done in a continuous manner. Aggregatability
also enables us to refresh the transcript if and when shares get compromised.

Our DKG transcripts contain the information needed for parties to decrypt
their secret shares. During aggregation it is therefore essential to ensure that only
valid (partial) transcripts are aggregated. We achieve this by making our tran-
scripts publicly-verifiable so that anybody receiving and aggregating transcripts
can verify their correctness. Making the transcripts publicly-verifiable has sev-
eral other advantages: It ensures that all parties can obtain their secret shares,
even if they go offline momentarily, and also enables us to remove the “complaint
rounds” that are used in previous DKGs to expose misbehaving parties. This
improves overall latency, since fewer communication rounds are required, and
reduces the protocol’s complexity from an implementation perspective.

A consequence of our approach is that the DKG secret key and its shares are
group elements rather than field elements. While this prevents us from using it for
many well-known cryptosystems, we demonstrate its applicability by introducing
a verifiable unpredictable function (VUF) [24, 49] whose secret key is a group
element, and prove its security in the random oracle model. Threshold VUFs are
useful in the construction of verifiable random beacons, which themselves are
invaluable in building proof-of-stake-based cryptocurrencies [34, 45]. To the best
of our knowledge, our VUF is the first that takes a group element as the secret
key, and its performance is also reasonable: our VUF output consists of 6 source
group elements and can be verified using 10 pairings. We also provide further
optimizations enabling us to reduce the VUF contributions in the threshold
protocol to just 2 source group elements that can be verified with 3 pairings.

We also revisit the definitions for DKGs in the hope of reducing complexities
and inefficiencies. In particular, previous definitions [32] required secrecy, in the
sense that the output of the DKG must be indistinguishable from random. While
this notion has the benefit of making the DKG modular (one can replace key
generation with a DKG in any context), it also is difficult to realise. Indeed,
Gennaro et al. [32] demonstrated that the popular Pedersen DKG does not have
secrecy, and introduced an alternative and considerably less efficient protocol to
achieve secrecy. Additionally, no one-round DKG can achieve secrecy because a
rushing adversary (an adversary that plays last) can always influence the final
distribution. Instead, we look to prove that a DKG is robust (see Definition 6)
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and security-preserving (see Definition 8) in the sense that any adversary that
breaks the security of a threshold version of the scheme (i.e., one using a DKG)
also breaks the original security property. These security notions are new to this
paper.

Gennaro et al. [33] previously observed that the Pedersen DKG suffices to
construct threshold Schnorr signatures [59]. Recently, Benhamouda et al. [10]
found an attack on this approach when the adversary is concurrent. (Gennaro et
al. had not considered concurrent adversaries.) Komlo and Goldberg [48] show
that it is possible to avoid the attack but, in doing so, they lose robustness
(e.g., if a single party goes offline a signature will not be produced). This raises
questions as to whether it is still okay to use the Pedersen DKG with respect
to other signature schemes such as BLS. In this paper, we provide a positive
answer in the form of a security proof that holds concurrently and does not
rely on rewinding the adversary. Specifically, we show that the Pedersen DKG is
security-preserving with respect to any rekeyable encryption scheme, signature
scheme, or VUF scheme where the sharing algorithm is the same as encryption
or signing (see Definition 5).

Our contributions. In Section 5, we construct an aggregatable and publicly-
verifiable distributed key generation protocol. The aggregation can be completed
by any party (there are no additional secrets) and can also be done incremen-
tally. The cost of verifying our transcripts is O(n log n) whereas prior approaches
were O(n2) [28]. If any user temporarily goes offline, they can still recover their
secret shares. Dealing DKG shares takes O(n log n) time and aggregation costs
are O(n).

We prove security of our DKG using a natural definition (see Section 3.6),
which roughly states that, if it is possible to break a cryptosystem’s security
game with a DKG swapped in, then it is possible to break that cryptosystem’s
original security game that did not use the DKG for key generation. We fur-
ther demonstrate that, counter-intuitively, it is possible to prove that a DKG
realises this definition without needing a separate proof for each cryptosystem.
Indeed, we show that any encryption scheme, signature scheme, or VUF that are
rekeyable, and where the sharing algorithm is the same as encryption or sign-
ing, can be securely instantiated using a key-expressable DKG (see Definition 7).
This includes El-Gamal encryption, BLS signatures, a new VUF we introduce
in Section 7, and, we suspect, many others.

We further demonstrate the applicability of our techniques by showing that
all three of the Pedersen DKG [54], the Fouque-Stern DKG [28], and our aggre-
gatable DKG are key-expressable and thus can be used securely with rekeyable
encryption schemes, signature schemes, and VUFs whose decryption/ signing
algorithms are the same as the algorithms to generate decryption/ signature
shares. Our proof allows for rushing adversaries and holds concurrently (i.e.,
with respect to an adversary that can open many sessions at the same time).
We cannot cover Schnorr signatures, however, because their threshold variants
do not appear to be rekeyable.
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Our final contribution, in Section 8, is a Rust implementation of our aggre-
gatable DKG to demonstrate its practicality by showing that its overheads are
indeed linear. For example, the evaluation of our implementation shows that for
64 / 128 / 8192 nodes it takes 71 ms / 137 ms / 8,000 ms to share one secret and
359 ms / 747 ms / 42,600 ms to verify the corresponding transcript.

2 Related Work

DKG Broadcasts P2P PV Complaints Rounds Prover Verifier
O(n) O(1) Broadcast Gossip Local Global

Pedersen n − n no yes 3 − n lgn n2 −

Kate − n n no yes 3 − n2 n −

AMT − n n lgn no yes 3 − n lgn n lgn −

Fouque-Stern n − n2 yes no 1 − n lgn n2 n2

Our work lgn n n lg2 n yes no 2 lgn n lgn n lg2 n n lgn

Table 1. Complexities of prior DKG protocols with n parties, per party. In the
“Broadcast” column, we count the number of broadcasts by size (either O(n)
or O(1)-sized). “P2P” means the total size of the messages sent over public and
private communication channels (excludes broadcast messages). “PV” means
publicly-verifiable. “Verifier local” indicates the per-party time spent verifying
their shares from other parties, while “global” indicates the time to verify the
final DKG transcript.

We provide an asymptotic overview of the state-of-the-art for DKGs in Ta-
ble 2. Here we assume that the threshold t is linear in n. Our comparisons
consider the optimistic case where there is no more than a constant number of
complaints for protocols where these are relavant (recall in our protocol there
are no complaints).

Pedersen introduced the first efficient DKG protocol for discrete log-based
cryptosystems [55], building on top of Feldman’s VSS [26]. Gennaro et al. [33]
showed Pedersen’s DKG does not generate uniformly distributed secrets, and
proposed a protocol that does but at the cost of lower efficiency. They also fix
problems with the complaint phase in Pedersen’s DKG. Neji et al. [51] gave a
more efficient protocol that ensures uniformity in Pedersen’s DKG. Kate [43]
reduced the broadcast overhead per DKG party from O(n) to O(1) using their
constant-sized polynomial commitment scheme [44]. However, there scheme de-
pends on a trusted setup algorithm, the costs of which are not considered in
Table 2. Trusted setup algorithms have a round complexity of t, and each of
these rounds require users to broadcast O(n) sized messages [15, 37]. Unlike
our protocol, all of these protocols rely on complaints rounds, are not publicly
verifiable and have O(n2) communication complexity.

4



Fouque and Stern present a one-round, publicly-verifiable DKG that uses
only public channels. However, their final transcript size is O(n2) whereas ours
is O(n) because we can aggregate. Furthermore, their security proof does not
allow for rushing adversaries. While they do not measure performance, their
use of Paillier encryption [53] is likely to make their DKG slow and have high
communication costs. Nonetheless, unlike our DKG, theirs has the advantage of
outputting secrets that are field, rather than group, elements.

Other works tackle the DKG problem from different angles. Canetti et al’s
DKG [16] has adaptive security, while ours is secure only against static adver-
saries that fix the set of corrupted parties before the protocol starts. Canny
and Sorkin [17] study DKG protocols with poly-logarithmic communication and
computation cost per-party, but their protocol relies on a trusted dealer that
permutes the parties before the protocol starts. Kate et al. [42, 43] and Kokoris-
Kogias et al. [47] study DKG protocols in the asynchronous setting, unlike our
work and most previous work. Schindler et al. [58] use the Ethereum blockchain
to instantiate the synchronous broadcast channel all DKG protocols mentioned
so far assume, including ours. Tomescu et al. [62] lower the computational cost
of dealing in Kate et al.’s DKG [44], at a logarithmic increase in communication.
Lastly, several works implement and benchmark synchronous, statically-secure
DKG protocols for discrete log-based cryptosystems [58, 52, 40, 23, 39].

Abe et al. [1] observed that any fully structure preserving signature scheme
that depends solely on algebraic operations cannot be used as a VUF or VRF.
Unlike our VUF (which is not algebraic), this rules out a number of structure
preserving signatures from being candidates for building VUFs [4, 2, 64, 3].

3 Definitions

3.1 Preliminaries

If x is a binary string then |x| denotes its bit length. If S is a finite set then

|S| denotes its size and x
$←− S denotes sampling a member uniformly from S

and assigning it to x. We use λ ∈ N to denote the security parameter and 1λ

to denote its unary representation. Algorithms are randomized unless explic-
itly noted otherwise. “PPT” stands for “probabilistic polynomial time.” We use
~y ← A(~x; r) to denote running algorithm A on inputs ~x and randomness r and

assigning its output to ~y. We use ~y
$←− A(~x) to denote y ← A(x; r) for uniformly

random r. We use [A(~x)] to denote the set of values that have non-zero proba-
bility of being output by A on input ~x. For two functions f, g : N → [0, 1], we
use f(λ) ≈ g(λ) to denote |f(λ) − g(λ)| = λ−ω(1). We use code-based games
in security definitions and proofs [9]. A game SecA(λ), played with respect to a
security notion Sec and adversary A, has a main procedure whose output is the
output of the game. The notation Pr[SecA(λ)] denotes the probability that this
output is 1.

We formalize bilinear groups via a bilinear group sampler, which is an ef-
ficient deterministic algorithm GroupGen that given a security parameter 1λ
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(represented in unary), outputs a tuple bp = (p,G1,G2,GT , e, g1, ĥ1) where G1,
G2, GT are groups with order divisible by the prime p ∈ N, g1 generates G1,
ĥ1 generates G2, and e : G1 × G2 → GT is a (non-degenerate) bilinear map.
Galbraith et al. distinguish between three types of bilinear group samplers [29].
Type I groups have G1 = G2 and are known as symmetric bilinear groups. Types
II and III are asymmetric bilinear groups, where G1 6= G2. Type II groups have
an efficiently computable homomorphism ψ : G2 → G1, while Type III groups do
not have an efficiently computable homomorphism in either direction. Certain
assumptions are provably false with respect to certain group types (e.g., SXDH
only holds for Type III groups), and we work only with Type III groups.

3.2 Communication and threat models

In this section we discuss our communication and threat models.

Synchrony: We assume perfect synchrony. There is a strict time bound between
rounds. All messages (honest and adversarial) within a round will be seen by all
parties by the end of the round.

Communication channel: We assume the existence of a broadcast channel for
sending messages. If a non-faulty party broadcasts a message then it will be seen
by everyone by the end of the round. It is not possible to forge messages from
non-faulty parties.

Adversarial threshold: We denote by t the adversarial threshold; i.e., the
number of parties that the adversary can corrupt. The total number of parties is
denoted by n. We set no specific bounds on the adversarial threshold because a
rational adversary might prefer to attack the secrecy of the DKG over blocking
the communication channels [5, 31].

Assumptions on the adversary: Our security proofs are given with respect to
static adversaries, meaning the adversary must state at the start of the security
game all of the parties that it has corrupted. We allow the adversary to control
the ordering of messages within a round, and in particular the adversary can
wait to receive all messages within a round before it broadcasts its message (this
is called a rushing adversary). The adversary can also choose not to participate
at all.

Byzantine adversary A byzantine adversary is a malicious entity that may
differ arbitrarily from the protocol.

Crashed party A crashed party is a party that has gone offline e.g. due to
a faulty internet connection. After a party has crashed they will not send any
more messages.

3.3 Assumptions

Our security proofs are provided in the random oracle model; i.e., there exists
a simulator that can program the output of a hash function provided that their
chosen outputs are indistinguishable from random.
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We rely on the SXDH assumption, which is an extension of the DDH assump-
tion to Type III bilinear groups. Informally, it states that given gα1 and gβ1 it is

hard to distinguish gαβ1 from random.

Assumption 1 (Symmetric External Diffie Hellman SXDH [7, 8]) For an
adversary A, define

AdvSXDH
A (λ) = |Pr[bp← GroupGen(1λ);α, β

$←− F : A(bp, gα1 , g
β
1 , g

αβ
1 ) = 1]

− Pr[bp← GroupGen(1λ);α, β, γ
$←− F : A(bp, gα1 , g

β
1 , g

γ
1 ) = 1]|.

We say that the SXDH assumption holds if AdvSXDH
A (λ) < negl(λ) for all PPT

adversaries.

The BDH assumption is an extension of the CDH assumption to Type III bi-
linear groups. Informally, it states that given gα1 , g

β
1 , ĥ

γ
1 , ĥ

αγ
1 it is hard to compute

e(g1, ĥ1)αβ .

Assumption 2 (Computational Bilinear Diffie Hellman BDH [12]) Define
an adversary A’s advantage AdvBDH

A (λ) against BDH by

Pr[bp← GroupGen(1λ);α, β, γ
$←− F : A(bp, gα1 , g

β
1 , ĥ

γ
1 , ĥ

αγ
1 ) = e(g1, ĥ1)αβ ].

We say that the BDH assumption holds if AdvBDH
A (λ) < negl(λ) for all PPT

adversaries.

3.4 Verifiable unpredictable functions (VUFs)

A VUF allows a party with a secret key to compute a deterministic (keyed)
function and prove to an external verifier that the result is correct. The notion
is related to signatures, with the extra requirement that the output of the signer
must be unique, even to a party that can choose the secret key. We have made
the following changes to prior definitions [24] in order to better suit our setting:
(1) we include a global setup algorithm to generate a common reference string;
(2) we include a derive algorithm to map the prover’s output onto the unique
function output.

Definition 1 (Verifiable Unpredictable Function). Let Π = (VUF.Setup,
VUF.Gen,VUF.Eval,VUF.Sign,VUF.Derive,VUF.Ver) be the following set of effi-
cient algorithms:

crsvuf ← VUF.Setup(1λ) : a DPT algorithm that takes as input the security
parameter and outputs a common reference string.

(pk, sk)
$←− VUF.Gen(crsvuf): a PPT algorithm that takes as input a common

reference string and returns a public key and a secret key.

out ← VUF.Eval(crsvuf , sk,m): a DPT algorithm that takes as input a com-
mon reference string, secret key, and message m ∈ {0, 1}λ and returns
out ∈ {0, 1}λ.
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σ
$←− VUF.Sign(crsvuf , sk,m): a PPT algorithm that takes as input a common

reference string, secret key, and message, and returns a signature σ.

out ← VUF.Derive(crsvuf , pk,m, σ): a DPT algorithm that takes as input a
common reference string, public key, message and signature and returns
out ∈ {0, 1}λ.

0/1← VUF.Ver(crsvuf , pk,m, σ): a DPT algorithm that takes as input a com-
mon reference string, public key, message and signature and returns 1 to
indicate acceptance and 0 to indicate rejection.

We say that Π is a verifiable unpredictable function (VUF) if it satisfies cor-
rectness, uniqueness, and unpredictability (defined below).

A VUF is correct if an honest signer always convinces an honest verifier and
always outputs a seed such that the derive function outputs the correct value.

Definition 2 (Correctness). A VUF is correct if for all λ ∈ N and m ∈
{0, 1}λ we have that

Pr

 crsvuf ← Setup(1λ), VUF.Derive(crsvuf , pk,m, σ) =

(pk, sk)
$←− VUF.Gen(crsvuf), VUF.Eval(crsvuf , sk,m)

σ
$←− VUF.Sign(crsvuf , sk,m) ∧ VUF.Ver(crsvuf , pk,m, σ) = 1

 = 1.

A VUF is unique if an adversary (even one that chooses the secret key)
cannot output a verifying signature such that the derive function outputs the
wrong value.

Definition 3 (Uniqueness). For a VUF Π and an adversary A, let AdvuniqueA (λ) =

Pr[GameuniqueA (λ)], where GameuniqueA (λ) is defined as follows:

main GameuniqueA (λ)

crsvuf ← VUF.Setup(1λ)

(pk,m, σ1, σ2)
$←− A(crsvuf)

y1 ← VUF.Derive(crsvuf , pk,m, σ1)
y2 ← VUF.Derive(crsvuf , pk,m, σ2)
return (y1 6= y2) ∧ VUF.Ver(crsvuf , pk,m, σ1) ∧ VUF.Ver(crsvuf , pk,m, σ2)

We say that Π is unique if for all PPT adversaries A we have that AdvuniqueA (λ) ≤
negl(λ).

Finally, a VUF is unpredictable if an adversary cannot predict the output of
the function VUF.Eval on a message for which it has not seen any valid signatures.

Definition 4 (Unpredictability). For a VUF Π and an adversary A, let

AdvpredictA (λ) = Pr[GamepredictA (λ)] where GamepredictA (λ) is defined as follows:
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main GamepredictA (λ)

H ← ∅
crsvuf ← VUF.Setup(1λ)
(pk, sk)← VUF.Gen(crsvuf)

(m, y)
$←− AVUF.Sign(crsvuf ,sk,·)(crsvuf , pk)

return (VUF.Eval(crsvuf , sk,m) = y) ∧ (m /∈ H)

Oracle OVUF.Sign(crsvuf ,sk,m)

add m to query set H
return VUF.Sign(crsvuf , sk,m)

We say that Π is unpredictable if for all PPT adversaries A we have that
AdvpredictA (λ) ≤ negl(λ).

3.5 Rekeyability

To show that existing cryptographic primitives can be instantiated with our
DKG, and other DKGs in the literature, we rely on a property called rekeyability.
Intuitively, rekeyability says that it is possible to transform an object (e.g., a
ciphertext or signature) that was formed using one cryptographic key into an
object formed with a related key. As one concrete example, in the BLS signature
scheme, in which a signature on a message m is of the form σ = H(m)sk1 , it is
possible to transform this into a signature under the key αsk1+sk2 by computing
σα · H(m)sk2 . This means that BLS can be efficiently rekeyed with respect to
the secret key. While this notion is related to the idea of re-randomizability [36,
57, 27], we are not aware of any formalizations in the literature and it may be
of independent interest.

Definition 5 (Rekeyability). For a public-key primitive Π = (KeyGen, Π1, . . . ,
Πn) and functions fk(α, k1, k2) that outputs αk1 ⊕ k2 for some binary opera-
tor ⊕ (typically + or ×), we define rekeyability as follows for all α ∈ N and
(pk1, sk1), (pk2, sk2) ∈ [KeyGen(1λ)]:

– We say that an algorithm Πi is rekeyable with respect to the secret key if
there exists an efficient function rekeyi such that

rekeyi(α, pk1, sk2, x,Πi(sk1, x; r)) = Πi(fsk(α, sk1, sk2), x; r)

for all x ∈ Domain(Πi) and randomness r. Likewise, we say that an algo-
rithm Πj is rekeyable with respect to the public key if there exists an efficient
function rekeyj such that

rekeyj(α, pk1, sk2, Πj(pk1, x; r)) = Πj(fpk(α, pk1, pk2), x; r)

for all x ∈ Domain(Πi) and randomness r.
– We say that (Πi, Πj) is rekeyable with respect to the secret key if (1) Πi is

rekeyable with respect to the secret key and (2)

Πj(pk1, y) = Πj(fpk(α, pk1, pk2), rekeyi(α, pk1, sk2, y)).

Likewise we say that (Πi, Πj) is rekeyable with respect to the public key if
(1) Πi is rekeyable with respect to the public key and (2)

Πj(sk1, y) = Πj(fsk(α, sk1, sk2), rekeyi(α, pk1, sk2, y)).
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For encryption, we would want that (Encrypt,Decrypt) is rekeyable with re-
spect to the public key, meaning new key material can be folded into cipher-
texts without affecting the ability to decrypt. For signing, we would want that
(Sign,Verify) is rekeyable with respect to the secret key, meaning that if signa-
tures verify then so do their rekeyed counterparts.

3.6 Distributed key generation (DKG)

We define a distributed key generation (DKG) as an interactive protocol that is

used to generate a keypair (pk, sk). We define this as (transcript, pk)
$←− DKG(I, n),

where n is the number of participants in the DKG, I is the indices of the ad-
versarial participants (so |I| ≤ t), pk is the resulting public key, and transcript is
some representation of the messages that have been exchanged.

We additionally consider an algorithm Reconstruct that, given transcript and
the shares submitted by t + 1 honest parties, outputs the secret key sk cor-
responding to pk. With this in place, we can define an omniscient interactive

protocol (transcript, (pk, sk), stateA)
$←− OmniDKG(I, n) that is aware of the inter-

nal state of each participant and thus can output sk (by running the Reconstruct
algorithm) and stateA; i.e., the internal state of the adversary.

The Reconstruct algorithm is useful not only in defining this extra interactive
protocol, but also in defining a notion of robustness for DKGs (initially called
correctness by Gennaro et al. [32]). We define this as follows:

Definition 6 (Robustness). A DKG protocol is robust if the following prop-
erties hold:

– A DKG transcript dkg determines a public key pk that all honest parties
agree on.

– There is an efficient algorithm Reconstruct

sk← Reconstruct(dkg, sk1, . . . , sk`) for t+ 1 ≤ ` ≤ n

that takes as input a set of secret key shares where at least t + 1 are from
honest parties and verifies them against the public transcript produced by the
DKG protocol. It outputs the unique value sk such that pk← KeyGen(1λ; sk).

Beyond robustness, we also want a DKG to preserve security of the under-
lying primitive for which it is run. Previous related definitions of secrecy for
DKGs required there to exist a simulator that could fix the output of the DKG;
i.e., given an input y, could output (transcript, y) that the adversary could not
distinguish from a real (transcript, pk) output by the DKG run with t adversar-
ial participants. While general, this definition is strong and required previous
constructions to have more rounds or constraints than would otherwise be nec-
essary; e.g., there seem to be significant barriers to satisfying this definition in
any DKG where the adversary is allowed to go last, as they the know the entire
transcript and can bias the final result.
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In defining what it means for a DKG to preserve security, we first weaken
this previous definition. Rather than require a simulator given pk1 to have the
DKG output exactly pk1, we consider that it can instead fix the output public
key to have a known relation with its input public key. In particular, a simulator
given pk1 can fix the output of the DKG to be pk, where the simulator knows
(α, pk2, sk2) such that pk = f(α, pk1, pk2) for α 6= 0 and f as defined in the
rekeyability definition (see Definition 5). We call this property key expressability.

Definition 7 (Key expressability). For a simulator Sim, define as (transcript,

pk, α, pk2, sk2)
$←− SimDKG(Sim, I, n) a run of the DKG protocol in which all hon-

est participants are controlled by Sim, which takes as input a public key pk1 and
has private outputs α, pk2, and sk2. We say that a DKG is key-expressable
if there exists such a simulator Sim such that (1) (transcript, pk) is distributed
identically to the output of DKG(I, n), (2) (pk2, sk2) is a valid keypair, and (3)
pk = f(α, pk1, pk2) = αpk1 ⊕ pk2.

To now define a security-preserving DKG, we intuitively consider a DKG
being run in the context of a security game. To keep our definition as general
as possible, our only requirements are that (1) the security game contains a line

of the form (pk, sk)
$←− KeyGen(1λ) (it also works if KeyGen takes a common

reference string as additional input), and (2) pk is then later given as input to
the adversary. We then say that the DKG preserves security if it is not possible
for an adversary participating in the DKG to do better than it would have done
in the original security game, in which it was given pk directly. Formally, we
have the following definition.

Definition 8 (Security-preserving). Define Game as any security game con-

taining the line (pk, sk)
$←− KeyGen(1λ), denoted linepk, and where pk is later input

to an adversary A (in addition to other possible inputs). Define Game′(line, x),
parameterized by a starting line line and some value x, as Game but with linepk
replaced by line and A given x as input rather than pk. It is clear that Game =
Game′(linepk, pk).

Define linedkg as the line (transcript, (pk, sk), stateA)
$←− OmniDKG(I, n), and

define DKG-Game← Game′(linedkg, stateA). We say the DKG preserves security
for Game if

AdvDKG-Game
A (λ) ≤ AdvGame

A (λ) + negl(λ)

for all PPT adversaries A.

We do not view our requirements for the original security game as restrictive,
given the number of security games that satisfy them. For signature unforgeabil-
ity, for example, our definition says that an adversary that participates in the
DKG, and can carry its state from that into the rest of the game (including all
of the messages it saw), cannot achieve better advantage than when it is just
given the public key (as in the standard EUF-CMA game).

While the relationship between key expressability and security-preserving
DKGs is not obvious, we show in Section C that it is typically the case that
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when key-expressable DKGs are used for rekeyable primitives, they preserve the
security of that primitive’s underlying security game.

4 Our Enhanced Scrape PVSS

A secret sharing scheme allows a dealer to deal out n secret shares so that any
subset of t + 1 shares suffices to reconstruct the secret, but subsets of size ≤ t
shares do not. A publicly verifiable secret sharing (PVSS) scheme is a secret
sharing scheme in which any third party can verify that the dealer has behaved
honestly. Importantly, PVSS obviates the need for a complaint round in VSS
protocols, which simplifies designing PVSS-based DKG protocols [28]. Cascudo
and David designed an elegant PVSS scheme called Scrape [18] with O(n) ver-
ification costs. In this section, we describe a slightly-modified variant of Scrape
that supports aggregation and uses Type III pairings and an additional element
û2 ∈ G2 that will help our DKG security proofs later on. We rely on Type III
pairings, not only for efficiency, but also because the SXDH assumption does not
hold in symmetric groups. We give a formal description in Fig. 1. In Section 5,
we use this slightly-modified variant of Scrape to construct our DKG.

Common reference string (CRS). All parties use the same CRS consisting

of (1) a bilinear group description bp (which fixes g1 ∈ G1 and ĥ1 ∈ G2), (2) a
group element û1 ∈ G2 and (3) encryption keys eki ∈ G2 for every party Pi with

corresponding decryption keys dki ∈ F known only to Pi such that eki = ĥdki1 .

Dealing. Scrape resembles other Shamir-based [60] secret sharing schemes. The

Scrape dealer will share a secret ĥa01 ∈ G2, whose corresponding a0 ∈ F the
dealer knows. (This is different than other VSS schemes, which typically share a
secret in F rather than in G2.) The dealer picks a random, degree-t polynomial
f(X) = (a0, a1, . . . , at), where f(0) = a0, and commits to it via Feldman [26] as

Fi = gai1 ,∀i ∈ [0, t]. Party Pi’s share will be ĥ
f(ωi)
1 . The dealer then computes

Feldman commitments Ai = g
f(ωi)
1 and encryptions ek

f(ωi)
i of each share. (The

term “encryption” here is slightly abused since these are not IND-CPA-secure
ciphertexts.) The PVSS transcript will consist of the Feldman commitments to
f(X) and to the shares, plus the encryptions of the shares. Additionally, we
augment the transcript with û2 = ûa01 , which helps our DKG security proofs.

Verifying. Each party Pi can verify that the PVSS transcript is a correct sharing
of ĥa01 . For this, Pi checks the Feldman commitments Ai to the shares f(ωi) are
consistent with the Feldman commitment to f(X) via Lagrange interpolation
in the exponent (see Fig. 1). Then, each Pi checks their encryption of f(ωi)
against Ai. Altogether, this guarantees that the encrypted shares are indeed the
evaluations of the committed polynomial f .

Aggregating transcripts. One of our key contributions is an algorithm for
aggregating two Scrape PVSS transcripts pvss1 and pvss2 for polynomials f1

and f2 into a single transcript for their sum f1 + f2. This is a key ingredient
of our DKG from Section 5. Our aggregation leverages the homomorphism of
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Scrape.Deal(bp, ek, û1, a0)→ pvss

(a1, . . . , at)
$←− Ft, f(X)←

∑t
i=0 aiX

i

F0, . . . , Ft ← ga01 , . . . , gat1

û2 ← ûa01

A1, . . . , An ← g
f(ω1)
1 , . . . , g

f(ωn)
1

Ŷ1 . . . , Ŷn ← ek
f(ω1)
1 , . . . , ek

f(ωn)
n

return F , û2,A, Ŷ

Scrape.Verify(bp, ek, û1, û2, pvss)→ 0/1

F , û2,A, Ŷ ← parse(pvss)

α
$←− F

check
∏n
j=1 A

`j(α)

j =
∏t
j=0 F

αj

j

check e(F0, û1) = e(g1, û2)

check e(g1, Ŷj) = e(Aj , ekj) for 1 ≤ j ≤ n
return 1 if all checks pass, else return 0

Scrape.Aggregate(bp, pvss1, pvss2)→ pvss

((F1,0, . . . , F1,t), û1,2, (A1,1, . . . , A1,n), (Ŷ1,1, . . . , Ŷ1,n))← parse(pvss1)

((F2,0, . . . , F2,t), û2,2, (A2,1, . . . , A2,n), (Ŷ2,1, . . . , Ŷ2,n))← parse(pvss2)

for 0 ≤ i ≤ t:
Fi ← F1,iF2,i

for 1 ≤ i ≤ n:

Ai ← A1,iA2,i, Ŷi ← Ŷ1,iŶ2,i

û2 ← û1,2û2,2

return F , û2,A, Ŷ

Fig. 1. Dealing, verification and aggregation algorithms for the Scrape PVSS.
Here, ek,F ,A, Ŷ denote vectors of eki’s, Fi’s, Ai’s and Ŷi’s. The polynomial
`j(X) denotes the Lagrange polynomial equal to 1 at ωj and 0 at ωi 6= ωj . The
ωi’s are public predetermined values which, for efficiency purposes, should be
chosen as roots of unity of degree n. For more details, see Appendix A.

Feldman commitments and of the encryption scheme. Indeed, suppose we have
Feldman commitments to fb consisting of Fb,i = g

ab,i
1 ,∀i ∈ [0, t], where ab,i’s are

the coefficients of fb, for b ∈ {1, 2}. Then, Fi = F1,iF2,i = ga1,i+a2,i ,∀i ∈ [0, t]
will be a Feldman commitment to f1 + f2. Similarly, we can aggregate the share
commitments Ab,i = gfb(ωi) as Ai = A1,iA2,i = g(f1+f2)(ωi),∀i ∈ [n]. Lastly,

the encryptions ek
fb(ωi)
i can be aggregated as ek

(f1+f2)(ωi)
i = ek

f1(ωi)
i ek

f2(ωi)
i . We

summarize this aggregation algorithm in Fig. 1.

Reconstructing the secret. At the end of the PVSS protocol, each party Pi

can decrypt their share as Âi = Ŷ
dk−1
i

i = (ek
f(ωi)
i )dk

−1
i = ĥ

f(ωi)
1 . Recall that

the degree t polynomial f(X) encodes the secret f(0) = a0. Thus, any set S of

≥ t+ 1 honest parties can reconstruct sk = ĥ
f(0)
1 as follows:

1. For each share Âi provided, check that e(Ai, ĥ1) = e(g1, Âi), where Ai =

g
f(ωi)
1 is part of the PVSS transcript. If this check fails, or if Pi does not

provide a share, then remove Pi from S.

2. Return, sk =
∏
i∈S Â

`S,i(0)
i where `S,i(X) is a Lagrange polynomial equal to

0 at ωj ∈ S for i 6= j, and 1 at ωi.
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5 Distributed Key Generation

In this section, we describe our distributed key generation (DKG) protocol for
generating a key-pair (pk, sk) of the form

pk = (ga1 , û
a
1) ∈ G1 ×G2 and sk = ĥa1 ∈ G2, where a ∈ F

We often refer to a ∈ F as the DKG secret. All parties Pi use the same Scrape
CRS (see Section 4) but augmented with verification keys vki (defined later).

At a high level, our DKG protocol resembles previous protocols based on
verifiable secret sharing: each party Pi deals a secret ĥci1 to all other parties
using the Scrape PVSS from Section 4. Additionally, each party Pi includes a
proof-of-knowledge of their secret ci. At this point, each party Pj would have
to verify the PVSS transcript of every other party Pi, resulting in O(n2) work.

Then, the final secret would be sk = ĥa1 with a =
∑
i∈Q ci, where Q is the set of

all parties who dealt honestly (i.e., whose PVSS transcript verified). Note that
since PVSS transcripts are publicly-verifiable, all parties Pi agree on Q and there
is no need for a complaint round. We often refer to an honest party Pi as having
contributed to the final secret key and to ci as its contribution.

Gossip and aggregate. To avoid the O(n2) verification work per party, we
leverage aggregation of Scrape PVSS transcripts. We observe that a party who
verified several transcripts can aggregate them into a single one and forward
it to another party, who can now verify this aggregated transcript faster. By
carefully aggregating and gossiping transcripts in this manner, we decrease veri-
fication time per party from O(n2) to O(n log2 n). One caveat is that, due to the
randomized nature of gossiping, a party’s contribution ci might be incorporated
multiple times, say wi times, into the final secret sk = ĥa1 . As a result, the final
a =

∑
i∈Q wici, where wi is called the weight of each ci.

Signatures-of-knowledge of contributions. Similar to previous DKGs [33],
our DKG requires each party Pi to prove knowledge of its contribution ci to
the final DKG secret. However, since our DKG transcripts must be publicly-
verifiable, we also require each party to sign their contributions. We achieve
both of these goals using a signature-of-knowledge (SoK). Specifically, Pi signs
Ci = gci1 using its secret key ski, with corresponding verification key vki = gski1 :

σi = (σi,1, σi,2) = (HashG2
(Ci)

ci ,HashG2
(vki, Ci)

ski)

where HashG2
is a hash function that maps to G2. Any verifier with vki can

verify the signature-of-knowledge σi of ci as:

e(Ci,HashG2
(Ci)) = e(g1, σi,1) ∧ e(vki,HashG2

(vki, Ci)) = e(g1, σi,2)

Our signatures of knowledge are simulation-sound and thus cannot be com-
pressed or combined. However, since they are constant-sized, this is not prob-
lematic. We refer to the signing algorithm as SoK.Sign(Ci, ski, ci)→ σi and the
verification algorithm as SoK.Verify(vki, Ci, σi)→ 0/1.
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DKG transcripts. To maintain their public-verifiability, aggregated PVSS
transcripts must keep track of the weights wi of each party’s contribution ci
and of the σi’s. This gives rise to a new notion of a DKG transcript defined as:

transcript = ((C1, . . . , Cn), (w1, . . . , wn), (σ1, . . . , σn), pvss), (1)

where Ci = gci1 is a commitment to the contribution ci of party Pi, wi is its
weight, σi is the SoK of ci and pvss is an (aggregated) PVSS transcript for
secret a =

∑
i∈[n] wici.

Recall from Fig. 1 that pvss stores a Feldman commitment F to a poly-
nomial f(X) with f(0) = a and that F0 = ga1 . In our protocol, each party

Pi initializes their DKG transcript by picking ci
$←− F and setting pvss ←

Scrape.Deal(bp, ek, û1, ci), Ci ← gci1 , wi ← 1 and σi ← SoK.Sign(Ci, ski, ci).
For j 6= i, Pi sets Cj ← ⊥, wj ← 0 and σj ← ⊥. Importantly, in our protocol,
each party will broadcast the Ci commitment to their contribution and gossip
the rest of their DKG transcript to a subset of the other parties (we discuss this
in more detail later on).

Verifying DKG transcripts. To verify the DKG transcript from Eq. (1), one
first checks that its inner pvss transcript verifies. Second, for all non-trivial con-
tributions with wi 6= 0, one first checks if their signature of knowledge σi verifies.
Finally, one checks that the contributions correctly combine to the commitment
F0 to the zero coefficient of f(X) shared in pvss; i.e., that Cw1

1 · · ·Cwnn = F0. If
transcript passes these checks, then one can be sure that the players Pi which
have wi 6= 0 in transcript have contributed to its corresponding DKG secret. See
Fig. 2 for a full description.

Aggregating DKG transcripts. Given two input DKG transcripts

(Cb,1, . . . , Cb,n), (wb,1, . . . , wb,n), (σb,1, . . . , σb,n), pvssb, for b ∈ {1, 2}

we can easily aggregate them into a single DKG transcript

(C1, . . . , Cn), (w1, . . . , wn), (σ1, . . . , σn), pvss

We first aggregate the pvssb transcripts into pvss via Scrape.Aggregate (see Fig. 1).
Second, we aggregate the weights, which are field elements, as wi = w1,i +
w2,i,∀i ∈ [n]. Third, if Pi contributed in one of the input transcripts, then
Pi’s contribution should also be reflected in the aggregated transcript. In other
words, for any Cb,i 6= ⊥ and valid σb,i, we simply set Ci = Cb,i and σi = σb,i.
The choice of Cb,i does not matter when they are both 6= ⊥ since they were
both obtained from the broadcast channel, so they must be equal. As a result,
their corresponding σb,i’s will also be equal since our signatures of knowledge
are unique.

Reconstructing the secret. As explained in the beginning of this section, the

final key-pair will be pk = (g
f(0)
1 , û2) = (g

f(0)
1 , û

f(0)
1 ) and sk = ĥ

f(0)
1 . Since the fi-

nal DKG transcript is just an augmented Scrape PVSS transcript, reconstruction
of sk works as explained in Section 4.
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DKG.Aggregate(bp, transcript1, transcript2)→ transcript

((C1,1, . . . , C1,n), (w1,1, . . . , w1,n), (σ1,1, . . . , σ1,n), pvss1)← parse(transcript1)
((C2,1, . . . , C2,n), (w2,1, . . . , w2,n), (σ2,1, . . . , σ2,n), pvss2)← parse(transcript2)

for 1 ≤ i ≤ n:
wi ← w1,i + w2,i

if σ1,i 6= ⊥: σi ← σ1,i, else: σi ← σ2,i

if C1,i 6= ⊥: Ci ← C1,i, else: Ci ← C2,i

pvss← Scrape.Aggregate(bp, pvss1, pvss2)
return (C1, . . . , Cn), (w1, . . . , wn), (σ1, . . . , σn), pvss

DKG.Verify(bp, (eki, vki)i∈[n], û1, transcript)→ 0/1

((C1, . . . , Cn), (w1, . . . , wn), (σ1, . . . , σn), pvss)← parse(transcript)

((F0, . . . , Ft), û2, (A1, . . . , An), (Ŷ1, . . . , Ŷn))← parse(pvss)
check Scrape.Verify(bp, (ek1, . . . , ekn), û1, û2, pvss) = 1

for 1 ≤ i ≤ n:
if wi 6= 0: check SoK.Verify(vki, Ci, σi) = 1

check Cw1
1 · · ·Cwnn = F0

return 1 if all checks pass, else return 0

Fig. 2. Aggregation algorithm for the distributed key generation protocol.

5.1 A gossip protocol

In Step 4 of our DKG, we rely on a gossip protocol to communicate the O(n)-
sized DKG transcripts. By using gossip, we avoid both the need to broadcast
these larger messages, which is expensive, and the need for a central aggregator.
We detail our protocol in Appendix B, but provide some insight here into how
it works.

We take an optimistic approach and provide robustness for up to tr < n/2−
log n crashed parties but only up to log n Byzantine adversaries. We believe this
approach is often reasonable in practice because if a Byzantine adversary attacks
the robustness of a DKG, the only outcome is that the computation required
to output the DKG is higher. Furthermore, Byzantine attacks on robustness are
detectable, so any faulty party can be manually removed from the system. This
is in contrast to an attack on the security preservation of the DKG, which could
have far more serious consequences. If we want a security threshold of ts, then we
have to assume that ts parties respond. A direct implication is that n− tr must
be at least ts, showing an inherent tradeoff between the security and robustness
thresholds. In our scheme we can set ts to be exactly equal to n− tr.

The gossip protocol has each party send its currently aggregated DKG tran-
script to O(c log n) parties in expectation in each round, and terminate when
it has agreed on a “full” transcript ; i.e., a valid transcript with at least ts + 1
contributions. Here c is a small success parameter such that c ≥ 4. However,
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Our aggregatable DKG protocol

Common reference string: Scrape CRS consiting of bp = (p,G1,G2,GT , e, g1, ĥ1),
encryption and verficiation keys (eki, vki)i∈[n], nth roots of unity (ωi)i∈[n] in F, random
û1 ∈ G2 such that nobody knows logĥ1(û1).

Party Pi’s private input: Decryption key dki for eki and secret key ski for vki.

1. Each Pi picks random ci ∈ F, computes Ci = gci1 and broadcasts Ci.

2. Each Pi picks random polynomial fi(X) ∈ F[X] of degree at most t

fi(X) = ai,0 + ai,1X + · · ·+ ai,tX
t

such that ai,0 = ci. They compute fi(ωj) for j ∈ [n]. Each party gossips (see
Section 5.1) their DKG transcript consisting of (1) Fi,k = g

ai,k
1 for k ∈ [0, t];

(2) ûi,2 = ûci1 ; (3) a vector ~wi such that wi,j = 1 if i = j and 0 otherwise; (4)

Ai,j = g
fi(ωj)

1 for j ∈ [n]; (5) Yi,j = ek
fi(ωj)

j for j ∈ [n]; and (6) a vector ~σi such

that σi,j = (HashG2(Ci)
ci ,HashG2(vki, Ci)

ski) if i = j and ⊥ otherwise.

3. During the gossip phase, each Pi verifies the transcripts it receives using DKG.Verify
(see Fig. 2). If two transcripts verify, it aggregates them using DKG.Aggregate
(also in Fig. 2), and gossips the aggregated transcript. The aggregated transcripts
contain a list of weights (w1, . . . , wn) ∈ Fn indicating how many times each party
has contributed to the current transcript. When a party receives a “full” transcript
with ≥ t+ 1 non-zero weights, it broadcasts this as a candidate final transcript.

4. Parties terminate in the round where they first broadcast a “full” transcript. If
several candidate “full” transcripts were broadcast, the one whose pk has the lowest
bit count is chosen as the final one. The final pk = (

∏n
i=1 C

wi
i ,
∏n
i=1 û

wi
i,2). Each

party computes their secret key share as Y
dk−1
i

i such that they can reconstruct.

Fig. 3. Our DKG with reconstruction threshold t+ 1 run by parties P1, . . . , Pn.
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deciding when to terminate is non-trivial, because the aggregated “full” tran-
scripts may all be different. We thus still rely on broadcast to agree on which
transcript to use, but our goal is to minimize the number of total broadcasts. We
do this by having each party with a full transcript broadcast it with probability
2/n in a given round. We argue that this makes the protocol likely to terminate
within O(c log n) rounds. Parties agree to use the transcript whose public key
has a binary representation with the smallest bit-count (but any other publicly-
verifiable convention works too). In terms of complexity, our gossip protocol
requires O(cn2 log n) total words to be communicated in private messages and
O(c log2 n) broadcasts.

5.2 Security analysis

Robustness Our DKG is robust in the sense that all honest parties agree on
the final public key, and in the sense that any set S containing at least t + 1
honest parties can reconstruct the secret key.

Theorem 1 (DKG is robust). The scheme in Figure 3 is robust for any
primitive with keys of the form pk = (ga1 , û

a
1) ∈ G1 ×G2.

Proof. First we show that all honest parties have the same value pk. By perfect
synchrony we have that in each round all honest parties agree on a completing
set of broadcasts. From the broadcast messages that complete and verify, one
must have the most sparse binary decomposition. This message defines a public
key pk that all parties agree on.

We show that reconstruction always succeeds on input of n shares where
at least t + 1 are input by non-faulty parties. First observe that if the DKG
transcript verifies, then for some random value α we have that

A
`1(α)
1 · · ·A`n(α)

n = F0F
α
1 · · ·Fα

t

t

By the Schwartz-Zippel Lemma this implies that with overwhelming probability

f(X) = f0 + f1X + · · ·+ ftX
t = a1`1(X) + · · ·+ an`n(X)

and ai = f(ωi). Second observe that e(Ai, ĥ1) = e(g1, Âi) if and only if Âi =

ĥ
f(ωi)
1 . Where at least t + 1 parties are honest the reconstruction algorithm re-

ceives at least t+1 verifying shares. With t+1 verifying shares the reconstruction
algorithm always succeeds because f has degree t.

Security preserving We now prove that our DKG satisfies key expressability;
i.e., we construct a simulator that is able to fix the output to be a value αpk1 +
pk2, where pk1 is given as input and α 6= 0. This does not directly prove that
the DKG preserves security, but in Appendix C we detail how combining a key-
expressable DKG with rekeyable encryption schemes, signature schemes, and
VUFs implies that the DKG also preserves security of these primitives. We cover
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these three due to their popularity (and our VUF construction in Section 7),
but envisage that there are many other primitives that are rekeyable and thus
similarly preserve their security when combined with key-expressable DKGs.

Theorem 2 (DKG). The scheme in Figure 3 is key-expressable as per Def-
inition 7 in the random oracle model for any primitive with keys of the form
pk = (ga1 , û

a
1) ∈ G1 ×G2 and sk = ĥa1 ∈ G2.

Proof. We design an adversary B that takes as input pk1 such that whenever
the DKG outputs pk, B outputs α, pk2, sk2 such that pk = αpk1 + pk2. Suppose
B receives input pk1 = (g2, v̂2).

First B runs the DKG with A. Let IB ⊂ [1, n] be the set of corrupted (i.e.
“bad”) parties and IG ⊂ [1, n] be the set of uncorrupted (“good”) parties. For
good parties Pk, B simulates the adversarial view of this party’s output, so that
public view Ck, ûk,2 sent by Pk is equal to (gak2 , v̂ak2 ).

In the course of this simulation, B answers A’s queries to the oracle HashG2

by selecting r
$←− F at random, and returning ĥr1.

In the registration round, when A queries B on the k-th honest value, B
chooses µk, κk

$←− F randomly from the field and returns the public key (ekk, vkk) =
(ûµk1 , gκk2 ).

In the broadcast round, B chooses ak
$←− F randomly for each honest party

and computes Ck = gak2 . It then samples χk, ψk
$←− F and programs HashG2 to

return ûχk1 and ûψk1 on input Ck and (vkk, Ck) respectively. Finally it broadcasts
Ck. With overwhelming probability, A is yet to query the randomised value Ck.

In the share creation round, when queried on Pk, B is required to output

(Fk, ûk,2, σ̂k,Ak, Ŷk)

that are indistinguishable from a valid output. Assume without loss of generality
that |IB | = t. It then behaves as follows

1. Choose random x̄k,j
$←− F for each j ∈ IB and interpolate in the exponent to

find (Fk,0, . . . , Fk,t) such that Fk,i = gci1 , where
∑t
i=0 ciX

i evaluates to x̄k,j
at ωj for j ∈ IB and ak logg1(g2) at 0. These ci values are unknown to B.

2. Set ûk,2 = v̂ak2 .

3. Set σk = (v̂akχk2 , v̂κkψk2 ).

4. To compute Ak,1, . . . , Ak,n, set Ak,j =
∏t
i=0 F

ωij
k,i .

5. To compute Ŷk,j for j ∈ IB , return ek
x̄k,j
j . To compute Ŷk,j for j ∈ IG,

interpolate in the exponent to find ûc01 , . . . , u
ct
1 for c0, . . . , ct−1 as in Step 1

(recall that B knows û
logg1 (g2)

1 ). Return Ŷk,j =
∏t
i=0 û

ciµjω
i
j

1 .

This simulation is perfect. Indeed c0 = logg1(Ck) and c1, . . . , ct are randomly dis-

tributed. We have that ûk,2 = v̂
ak(ν+1)
2 = û

logg1 (Ck)

1 . Also, σk,1 = HashG2
(Ck)logg1 (Ck)

and σk,2 = HashG2
(vkk, Ck)logg1 (vkk). The values Ak,1, . . . , Ak,n are computed

honestly and are the unique encryptions that satisfy the verifier.
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Suppose that the DKG terminates with transcript

((C ′1, . . . , C
′
n), (w1, . . . , wn), (σ′1, . . . , σ

′
n), pvss) .

The public key is given by

C = C ′1 · · ·C ′n, û2 = û1,2 · · · ûn,2

For each adversarial contribution C ′i, B looks up r such that HashG2
(C ′j) = ĥr1.

Here, i can be any index, as A might have forged one of B’s contributions. If the
adversary has not queried HashG2 on C ′ then the probability of them returning
a verifying signature σ is negligible. To get the secret key share, B extracts

Ĉi = σ̂
1
r such that Ĉi = ĥ

logg1 (Ci)

1 .
If A has included at least one of B’s contributions, then B computes z =∑
k∈S wk for S the set of honest participants whose contribution is included in

the transcript. Additionally, B computes pk2 = (
∏
i 6∈S C

′
i,
∏
i 6∈S ûi,2) and sk2 =∏

i 6∈S Ĉi. Then, we have that pk = αpk1 + pk2 for α 6= 0 and sk2 is a key for pk2.
Thus B returns (α, sk2).

If A has not included any contributions from B, then that A has forged
a signature σ′k with respect to some vkk = gκk2 and contribution C ′k. Using

the oracle queries, B looks up r such that HashG2
(vkk, C

′
k) = ĥr1. Since σ′k =

(σ′k,1, σ
′
k,2) verifies, we have that σ′k,2 = ĥ

rκk logg1 (g2)

1 . Thus, B computes sk1 =

(σ′k,2)
1
rκk . Additionally, B computes pk2 = (g−1

2

∏
i C
′
i, v̂
−1
2

∏
i ûi,2) and sk2 =

sk−1
1

∏
i Ĉi. Then, we have that pk = pk1 + pk2 and sk2 is a key for pk2 and B

returns (1, sk2).

6 Alternative DKGs Have Provable Security

In this section we demonstrate that two popular DKGs, the Pedersen DKG and
the Fouque-Stern DKG, are also key-expressable. As a direct consequence, they
can be used to securely instantiate a DKG for both El-Gamal encryption and
BLS signatures, as we prove in Appendix D. Our results generalise to other
rekeyable constructions that have public keys in G and secret keys in F. In
addition to justifying the applicability of our security definitions and proof tech-
niques, we hope this also fills a gap in the literature as we are unaware of other
works that provide correct proofs for these DKGs.

6.1 Pedersen DKG from Feldman’s VSS

We prove that key expressability holds for Pedersen’s DKG provided the thresh-
old of adversarial participants is less than n/2. It is our belief that this bound
on the number of adversarial participants can be removed provided that one
gives signatures of knowledge of the individual contributions. Pedersen’s DKG
can be seen as n parallel instantiations of the Feldman VSS [26]. We remind
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the reader that key expressability does not imply secrecy (invalidating the at-
tack of Gennaro et al. [32]) but does allow us to prove the security preservation
of certain rekeyable schemes. A proof of the following theorem is provided in
Appendix E.2.

Theorem 3. The scheme in Figure 6 is a key-expressable DKG against static
adversaries with adversarial threshold t < n/2 for any scheme whose key gener-
ation outputs values pk = ga1 ∈ G1, sk = a ∈ F.

6.2 The Fouque-Stern publicly verifiable DKG

We now show the key expressability of the publicly verifiable Fouque Stern
DKG [28]. This DKG has the benefit of outputting field elements as secret keys,
but the total communication and verification costs are of order O(n2). Unlike
Fouque and Stern’s original argument, we allow for the existence of rushing ad-
versaries. Indeed Fouque and Stern rely in their reduction on an honest party
playing last. Instantiating such an assumption would require the use of a trusted
third party and therefore negate the benefits of distributing the key generation.
A proof of the following theorem is provided in Appendix E.3.

Theorem 4. The scheme in Figure 7 is a key-expressable DKG in the random
oracle model against static adversaries under the decisional composite residuosity
assumption for any scheme whose key generation outputs values pk = ga1 ∈ G1,
sk = a ∈ F.

6.3 El-Gamal and BLS

In Appendix D, we observe that El-Gamal encryption and BLS signatures are
both rekeyable (and both have field elements as secret keys). We thus obtain the
following two corollaries:

Corollary 1. The El-Gamal encryption scheme is IND-CPA-secure when in-
stantiated with the Pedersen DKG or the Fouque-Stern DKG.

Corollary 2. The BLS signature scheme is EUF-CMA-secure when instanti-
ated with the Pedersen DKG or the Fouque-Stern DKG.

7 A Structure-Preserving VUF

In this section, we introduce a verifiable unpredictable function (VUF), secure
in the random oracle model, that has group elements as the secret key. We can
thus securely instantiate our VUF using our DKG.

As one application, VUFs can be used to create randomness beacons, where
unlike in, e.g., BLS multi-signatures [11], if a threshold of signers is reached,
then the same signature is always produced. By hashing the outcome of this
VUF with a random oracle we can obtain a verifiable random function (VRF).
Abe et al. [1] proved that it is impossible to construct an algebraic VUF with a
secret key as a group element. Since we are using a hash function, however, we
are not fully algebraic and therefore sidestep this impossibility result.
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7.1 Our construction

Our VUF scheme is given in Figure 4. The techniques were inspired by a com-
bination of BLS signatures [13] and Escala-Groth NIZKs [25] (which are an
improvement of Groth-Sahai proofs [38]). Unlike BLS signatures our secret keys
are group elements and unlike Escala-Groth NIZKs our VUFs are non-malleable.

Given an input m ∈ F under public key ga1 , û
a
1 and secret key ĥa1 , the

unique output given by VUF.Eval(sk,m) is e(HashG1
(m), ĥa1). Given ga1 ∈ G1 and

HashG1
(m) ∈ G1, it is hard for an adversary to compute e(HashG1

(m), ĥ1)a ∈ GT .
We formally prove in Theorem 5 and 6 that our VUF satisfies uniqueness (see
Definition 3) and unpredictability (see Definition 4) under the SXDH and BDH
assumptions.

VUF.Setup(bp,HashG1)

û1, ĥ2, ĥ3, ĥ4
$←− G2

crsvuf ← (bp,HashG1 , ĥ2, ĥ3, ĥ4)
return crsvuf

VUF.Gen(crsvuf)

a
$←− F, pk← ga1 , û

a
1 ∈ (G1 ×G2)

sk← ĥa1 ∈ G2

return (pk, sk)

VUF.Eval(crsvuf , sk,m)

Z ← HashG1(m)
return e(Z, sk)

VUF.Derive(crsvuf , pk,m, σ)

(π1, π2, π3, π4 ∈ G4
1, π̂1, π̂2 ∈ G2

2)← parse(σ)
Z ← HashG1(m)

return e(Z, π̂2)e(π2, ĥ3)e(π4, ĥ4)

VUF.Sign(crsvuf , sk,m)

Z ← HashG1(m)

α, β
$←− F

π1, π2, π3, π4 ← gα1 , Z
α, gβ1 , Z

β

π̂1, π̂2 ← ĥ−α1 ĥ−β2 , ĥ−α3 ĥ−β4 · sk
return (π1, π2, π3, π4, π̂1, π̂2)

VUF.Ver(crsvuf , pk,m, σ)

(A, û2)← parse(pk)
(π1, π2, π3, π4 ∈ G4

1, π̂1, π̂2 ∈ G2
2)← parse(σ)

Z ← HashG1(m)

check 1 = e(g1, π̂1)e(π1, ĥ1)e(π3, ĥ2)

check 1 = e(Z, π̂1)e(π2, ĥ1)e(π4, ĥ2)

check e(A, ĥ1) = e(g1, π̂2)e(π1, ĥ3)e(π3, ĥ4)
return 1 if all checks pass, else return 0

Fig. 4. Verifiable unpredictable function with group elements as the secret key.

Setup: The setup algorithm is a transparent algorithm that takes as input the
bilinear group bp = (p,G1,G2,GT , e, g1, ĥ1) and returns four group elements in

the second source group: û1, ĥ2, ĥ3, ĥ4 ∈ G4
2.

KeyGen: The VUF.Gen algorithm takes as input the common reference string.

It samples a random field element a
$←− F. The public key pk ∈ G1 ×G2 and the

secret key sk ∈ G2 are given as pk = (ga1 , û
a
1) and sk = ĥa1 .

Sign: The VUF.Sign algorithm first hashes the message m to obtain Z ∈ G1 as
Z = HashG1

(m). The signer generates a commitment to sk by sampling random
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elements α, β ∈ F and computing

(π̂1, π̂2) = (ĥ−α1 ĥ−β2 , sk · ĥ−α3 ĥ−β4 ).

If ĥ1, ĥ2, ĥ3, ĥ4 are randomly distributed, this commitment is perfectly hiding.
However, if ĥ1, ĥ2, ĥ3, ĥ4 form an SXDH challenge, then there exists some ξ such
that ĥ3 = ĥξ1 and ĥ4 = ĥξ2, meaning that the commitment forms an El-Gamal
encryption of sk. In this case, we say that the commitment is perfectly binding.

Having generated (π̂1, π̂2), the signer now generates (π1, π2, π3, π4) ∈ G4
1 such

that

(π1, π2, π3, π4) = (gα1 , Z
α, gβ1 , Z

β)

These signature elements have been designed such that the random blinders α, β
are canceled out in the verifier’s equations.

The signer returns the output σ = (π1, π2, π3, π4, π̂1, π̂2).

Derive: The VUF.Derive computes Z = HashG1
(m) and then returns

T = e(Z, π̂2)e(π2, ĥ3)e(π4, ĥ4)

as the unique and unpredictable component. If the signer is honest then T =
e(Z, sk) = VUF.Eval(crsvuf , sk,m).

Verify: The VUF.Ver algorithm parses the signature to check that (π1, π2, π3, π4)
is in G4

1, and (π̂1, π̂2) is in G2
2. The verifier computes Z identically to the signer,

i.e., Z = HashG1(m). The verifier then checks that three pairing equations are
satisfied in order to be convinced that there exist α, β such that

(π2, π4, π̂2) = (Zα, Zβ , ĥ−α3 ĥ−β4 · sk)

Specifically, they check that:

1 = e(g1, π̂1)e(π1, ĥ1)e(π3, ĥ2) (2)

1 = e(Z, π̂1)e(π2, ĥ1)e(π4, ĥ2) (3)

e(pk, ĥ1) = e(g1, π̂2)e(π1, ĥ3)e(π3, ĥ4) (4)

They return 1 if all these checks pass and 0 otherwise.
Given a signature that satisfies these equations, an extractor that knows a

trapdoor SXDH relation between the CRS elements can output a valid witness
sk. However, there also exists a simulated CRS indistinguishable from random
such that we can simulate signatures without knowing sk.

Threshold VUF Scheme We discuss how to transform our VUF into a thresh-
old VUF. The individual VUF shares can be made shorter using our optimisation
in Appendix G. Suppose that there are n parties P1, . . . , Pn and we want that
any t + 1 of them can jointly sign a message, but that t of them cannot. We
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use Shamir’s secret sharing scheme and choose a degree t polynomial f(X). Let
ω1, . . . , ωn denote unique evaluation points and `S,1(X), . . . , `S,t+1(X) denote
the Lagrange polynomials such that for all ωj ∈ S we have that `S,i(ωj) is equal
to 1 if i = j and 0 otherwise.

The threshold setup algorithm runs identically to the non-threshold version
to return crsvuf . The key generation outputs a public key and n secret key shares
of the form

pk = (g
f(0)
1 , û

f(0)
1 ), sk1 = ĥ

f(ω1)
1 , . . . , skn = ĥ

f(ωn)
1 .

To compute their share of the threshold signature on m party Pi outputs

σi = (πi,1, πi,2, πi,3, πi,4, π̂i,1, π̂i,2)
$←− VUF.Sign(crsvuf , ski,m)

To aggregate t signature shares on m from parties {Pi}i∈S compute

σ =

(∏
i∈S

π
`S,i(0)
i,1 ,

∏
i∈S

π
`S,i(0)
i,2 ,

∏
i∈S

π
`S,i(0)
i,3 ,

∏
i∈S

π
`S,i(0)
i,4 ,

∏
i∈S

π̂
`S,i(0)
i,1 ,

∏
i∈S

π̂
`S,i(0)
i,2

)
The verification and derive algorithms run identically to their non-threshold
counterparts on the input (crsvuf , pk,m, σ)

We briefly show that σ is correct. Set Z = HashG1
(m) and see that σ =

(π1, π2, π3, π4, π̂1, π̂2) is given by

π1 =
∏
i∈S π

`S,i(0)
i,1 = g

∑
i∈S αi`S,i(0)

1

π2 =
∏
i∈S π

`S,i(0)
i,2 = Z

∑
i∈S αi`S,i(0)

π3 =
∏
i∈S π

`S,i(0)
i,3 = g

∑
i∈S βi`S,i(0)

1

π4 =
∏
i∈S π

`S,i(0)
i,4 = Z

∑
i∈S βi`S,i(0)

π̂1 =
∏
i∈S π̂

`S,i(0)
i,1 = ĥ

−
∑
i∈S αi`S,i(0)

1 ĥ
−

∑
i∈S βi`S,i(0)

2

π̂2 =
∏
i∈S π̂

`S,i(0)
i,2 = ĥ

−
∑
i∈S αi`S,i(0)

3 ĥ
−

∑
i∈S βi`S,i(0)

4

∏
i∈S sk

`S,i(0)
i

= ĥ
−

∑
i∈S αi`S,i(0)

3 ĥ
−

∑
i∈S βi`S,i(0)

4 ĥ
f(ωi)`S,i(0)
1

Since f has degree t we have that f(ωi)`S,i(0) = f(0). Denote α =
∑
i∈S αi`S,i(0)

and β =
∑
i∈S βi`S,i(0) in the above equation to get that

(π1, π2, π3, π4, π̂1, π̂2) = (gα1 , Z
α, gβ1 , Z

β , h−α1 h−β2 , h−α3 h−β4 ĥ
f(0)
1 ) .

Thus the threshold signature is distributed identically to the non-threshold coun-
terpart and the verifier and deriver output 1 and e(Z, ĥ1)f(0), respectively.

Aggregatable Signature Scheme It is also possible to use our VUF to in-
stantiate an aggregatable signature scheme with secret keys as group elements.
For aggregating, one simply takes the product of the public key elements out-
put by VUF.Gen and the signature elements output by VUF.Sign. Similar to the
BLS scheme, this aggregatable signature scheme would be susceptible to rogue
key attacks [50]. It is thus important to provide simulation-extractable proofs of
knowledge of secret keys as part of a public key infrastructure.
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7.2 Security analysis

To prove that our VUF is secure, we need to prove that it satisfies uniqueness
and unpredictability.

Theorem 5. The VUF in Figure 4 satisfies uniqueness (Definition 3) under
the SXDH assumption in the random oracle model.

Theorem 6. The VUF in Figure 4 satisfies unpredictability (Definition 4) un-
der the SXDH and the BDH assumption in the random oracle model.

We provide formal proofs of these theorems in Appendix F. Intuitively,
uniqueness relies on the fact that it would be statistically impossible to sat-
isfy the verifiers equations for a wrong evaluation if the CRS was made up of an
SXDH instance. Since VUF.Eval is deterministic there can only be one correct
evaluation. Thus if an adversary could break uniqueness in the general case, then
we could use them as a subroutine to determine SXDH instances from random.

Our unpredictability proof uses an adversary who predicts the VUF to com-
pute a BDH output. To do this we embed one component of the BDH challenge
into the public key being targeted, and the other into the adversaries random
oracle queries. However, we also need to simulate responses to the adversaries
signature requests, and to do this (after jumping to a hybrid game with a struc-
tured CRS) we need to program the oracle such that we know a discrete log.
This could present a collision as the adversary may have already queried that
point. To counteract, we take a random guess as to which oracle query the adver-
sary will output their prediction for, and if we guess wrong we abort. Thus our
reduction is not tight, but does provide us with a polynomial chance of success
whenever the adversary succeeds.

After observing that our VUF is rekeyable, we prove the following corollary
in Appendix D.

Corollary 3. The VUF in Figure 4 is unique and unpredictable when instanti-
ated with the DKG in Figure 3.

8 Implementation

We implement our DKG and VUF and summarise the performance of our
schemes in Tables 2 and 3. Our implementation is written in Rust on top of
the libzexe library, which performs efficient finite field arithmetic, elliptic curve
arithmetic, and finite field FFTs. We evaluate our DKG and VUF on a desktop
machine with an i7-8700k CPU at 3.7GHz and 32GB of DDR4 RAM. We use
the BLS12-381 curve. For hashing to groups, we use the try-and-reject method
by instantiating a ChaCha20 RNG with a Blake2s hash of the input message,
sampling field elements and checking if they are valid x-coordinates, deriving
the corresponding point if so. Our implementation is not constant-time. Upon
publication, we plan to release our implementation as open-source software.
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Parties DKG.Deal Scrape.Verify DKG.Verify Transcript size
(ms) (ms) (ms) (kB)

64 72 96 376 25
128 124 178 704 50
256 271 346 1305 99

8192 8000 9900 42 600 3146

Table 2. The performance of our DKG, averaged across 10 samples of each
operation. For n parties, we use a threshold of t = 2n/3.

Our VUF Our optimised VUF BLS [13]

Key prove (ms) - 2.89 -
Public key (bytes) 48 336 96
Key verify (ms) - 4.00 -
Sign (ms) 3.47 0.58 0.44
Signature size (bytes) 384 96 48
Verify (ms) 4.73 2.39 2.15
Derive (ms) 2.37 2.37 -

Table 3. The performance of our VUF (Section 7), our optimised VUF (Ap-
pendix G), and the BLS signature scheme. These numbers were averaged across
four distinct runs, with 100 samples of each operation per run.

We utilise a few optimization techniques throughout the implementation.
First, when verifying multiple pairing equations, we instead compute a ran-
domised check of a single pairing equation so as to amortise the cost of the
final exponentiations. We then compute the pairing product efficiently using the
underlying libzexe implementation. In the same vein, when verifying pairing
equations where two pairings are computed with respect to the same source
group element, we combine the two into a randomised check. For large multi-
exponentiations we use the libzexe implementation of Pippenger’s algorithm.
For large polynomial evaluations we use FFTs. We additionally utilise batch
normalization of projective points.

We evaluate our DKG with respect to 64, 128, 256, and 8192 parties. We see
that the time taken to compute, verify, and aggregate a transcript all increase
linearly in the number of parties. Verifying a transcript with 256 parties takes a
little more than a second.

In addition to our VUF presented in Section 7, we also evaluate an optimised
VUF that we present in Appendix G. We compare the performance of our VUF
and our optimised VUF with BLS [13], which is the state of the art in the random
oracle model. We do not give the derivation time for BLS because this is the
identity function. It can be seen that signing and verifying our optimised VUF
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is only fractionally more expensive than BLS, but that verifying our full VUF is
approximately twice as expensive.
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A The Scrape PVSS

We describe in more detail the operation of Scrape.Deal and Scrape.Verify. For
the reconstruction algorithm, which is unused in this work, we refer the reader
back to the original paper [18].

Dealer

Commit to the coefficients: The dealer takes as input (F̂0, a0) ∈ G×F where

F̂0 = ĥa01 is the secret being shared. They first samples a random polynomial

f(X) = a0 + a1X + · · ·+ atX
t

of degree at most t with a0 as the constant coefficient. They then commit to the
coefficients by computing (F0, . . . , Ft) ∈ Gt+1

1 as

(F0, . . . , Ft) = (ga01 , . . . , gat1 )

Compute additional element: The dealer sets û2 = ûa01 .

Commit to the evaluation points: Suppose that ω1, . . . , ωn form an order n
multiplicative subgroup in F (so that FFTs are efficient to compute). The dealer
computes

(A0, . . . , An−1) = (g
f(ω1)
1 , . . . , g

f(ωn)
1 ).

Note that the verifier could compute these points for itself but by having the
prover send these values we can save on verification costs.

Encrypt the evaluation points: To encrypt the evaluation points, the dealer
takes as input the encryption keys (ek1, . . . , ekn) ∈ Gn2 as input and returns the
encryptions (Ŷ1, . . . , Ŷn) ∈ Gn2 such that

(Ŷ1, . . . , Ŷn) = (ek
f(ω1)
1 , . . . , ekf(ωn)

n ).

Decrypting these values will yield group elements as opposed to field elements,
hence our final secret is a group element in G2.

Return the shares: The dealer returns a commitment to coefficients F ∈
Gt+1

1 , a commitment to the evaluation points A ∈ Gn1 , and the encryptions of

evaluation points Ŷ ∈ Gn2 .

Verifier

Compute the committed evaluations: The verifier ensures that the com-
mitted evaluations A ∈ Gn1 are consistent with the committed polynomial in F
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with a randomised check. They consider the Lagrange polynomials with respect
to the set of distinct points ω1, . . . , ωn ∈ Fn given by

`j(X) =

n∏
i=1,i6=j

X − ωi
ωj − ωi

such that `j(X) is equal to 0 on ωi 6= ωj and `j(ωj) = 1. The verifier samples a
random point α ∈ F. They check that

A
`1(α)
1 · · ·A`n(α)

n = F0F
α
1 · · ·Fα

t

t .

If this equation verifies then with overwhelming probability the evaluations in
A1, . . . , An are correct.

Check the additional value: The verifier checks that the additional value
û2 ∈ G2 has been computed correctly i.e. that

e(F0, û1) = e(g1, û2)

Check the encrypted evaluations are correct: The verifier checks that
the encryptions Ŷ ∈ Gn2 contain the same evaluations as A using n pairing
equations:

e(g1, Ŷ1) = e(A1, ek1), . . . , e(g1, Ŷn) = e(An, ekn)

If all checks pass the verifier returns 1 to indicate acceptance. Else it returns 0
to indicate rejection.

Observe that if this check passes then the secret share ĥ
f(ωi)
1 can be decrypted

as Ŷ
1
dk
i .

B Gossip in more detail

Here we describe our gossip protocol in more detail. We assume that up to
n
2 − log n parties may be crashed, and log n parties may be Byzantine. Denote
tr <

n
2 to be the total number of faulty parties, crashed and Byzantine alike.

In practice, we might set the threshold of faulty parties to be lower to allow
for a higher threshold in the security preservation. We describe our protocol
with respect to some success parameter c ≥ 4 which will usually be chosen to
be very small, and never greater than n

lnn . A higher success parameter would
result in larger round and communication complexity, but also result in a higher
probability of the protocol succeeding in the given number of rounds. More
precisely, the probability of succeeding in the given number of rounds is in the
order of n−c+O(1).
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Party Pi takes as input the public key infrastructure, the round number r ∈ N,
their secret key ski and their DKG transcript transcripti. They behave as follows.

for 1 ≤ j ≤ n:

send (yi, πi, transcripti) to Pj with probability d2c ln(n)e
n

for 1 ≤ j ≤ n such that a send request is received from Pj :
check DKG.Verify(bp, (eki, vki)i∈[n], û1, transcriptj) = 1
if yes set transcripti = DKG.Aggregate(bp, transcripti, transcriptj)

if r ≥ ln(n):
if transcripti contains t+ 1 contributions:

broadcast transcripti with probability 2
n

Terminate if broadcast completes with verifying transcript of t+ 1 contributions.

Fig. 5. Gossip protocol for Party Pi

B.1 Construction

In Figure B.1 we explain the actions that each party takes in the gossip proto-
col. Intuitively, in each round, every party uniformly picks an expected 2c lnn
parties to send its current aggregated DKG transcript. Then, after c lnn rounds,
every party that has aggregated a DKG transcript with enough contributions,
broadcasts it with probability 2

n , resulting in O(1) expected broadcasts in each
such round.

B.2 Complexity

The protocol requires O(c log n) rounds with all but a polynomially small prob-
ability (see Lemma 2). In each round, every nonfaulty party sends an expected
O(c log n) messages of size O(n) words (see Lemma 1). In addition, each party
reads an expected O(c log n) messages containing full DKG transcripts of size
O(n) words each. This includes messages from all Byzantine parties as well. Due
to standard measure-concentration arguments, this asymptotic complexity holds
w.h.p. as well. Summing up all of the messages, we find that each party reads and
sends O(c2n log2 n) words in private channels throughout the protocol w.h.p.

In addition, in every round an expectedO(1) broadcasts are sent by nonfaulty
parties, totalling inO(c log n) broadcasts. Due to standard measure-concentration
arguments, the number of broadcasts sent per round is O(log n) w.h.p., includ-
ing possible broadcasts from faulty parties. This means that the total number
of broadcasts sent throughout the protocol is O(c log2(n)) w.h.p.
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B.3 Expected number of rounds before parties have enough
contributions

Lemma 1. In O(c log n) rounds, all nonfaulty parties have a DKG transcript
with t+ 1 contributions with probability 1− 1

p(n) or greater for some polynomial
p.

Proof. First, note that at the time the adversary chooses which parties to cor-
rupt, it does not know which parties will communicate with each other through-
out the protocol. This means that the adversary’s choice of parties to corrupt is
entirely independent of the parties to whom the nonfaulty parties send messages.

Once a nonfaulty party j receives a message with a contribution that verifies
from party i, every message it sends will contain a contribution from party i,
and its transcript will verify as well. This means that we can essentially see the
protocol as n simultaneous runs of a gossip protocol with different sources for
each rumor. Observe some party i. In each round r, the probability that i does
not send a message to any nonfaulty party is:(

1− d2c lnne
n

)n−tr
≤
(

1− 2c lnn

n

)n
2

≤ e−c lnn = n−c

Using the union bound, the probability that there exists some nonfaulty party
that doesn’t send a message to some nonfaulty party in any given round is
no greater than n · n−c = n−c+1. Note that clearly the probability that any
specific nonfaulty party is chosen is entirely symmetric to the probability that
any other party is chosen, so at least one nonfaulty party is uniformly chosen
by each other nonfaulty party with probability n−c+1 or greater. Observe only
the communication between nonfaulty parties. Using well-known results [21, 41,
56], we know that if in each round all nonfaulty parties communicate with at
least one nonfaulty party, then with all but a polynomially small probability of
failure 1

q(n) , all parties receive a contribution from party i in O(log n) rounds.

We can also make sure that 1
q(n) = O(n−c+4) by running the gossip protocol

for O(c log n) rounds. Let d be the constant in the O(c log n) number of rounds
required. Now define a failure event in which either there exists some nonfaulty
party that doesn’t send a message to any nonfaulty party in the first d · c log n
rounds, or that the gossip initiated by some nonfaulty party requires more than
d · c log n rounds. Again, using the union bound and the fact that n

lnn ≥ c, the
probability that this event takes place is no greater than:

d · c log n · n
2
· n−c+1 +

n

2
· 1

q(n)
= O

(
n−c+3

)
which is polynomially small.
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B.4 Total expected number of rounds

Lemma 2. Some nonfaulty party sends a broadcast of a verifying DKG tran-
script in O(c log n) rounds with all but a polynomially small probability, if no
such broadcast has previously been sent.

Proof. As shown in Lemma 1, after O(c log n) rounds all nonfaulty parties have
aggregated a DKG transcript with contributions from all nonfaulty parties with
all but a polynomially small probability, 1

p(n) . Since n > 2t, this means that at

that time they all have at least t + 1 contributions in their aggregated DKG
transcripts. From that point on, every party has a 2

n probability of broadcasting
its aggregated DKG transcript in each round. Now observe the next dc lnne
rounds. The probability that none of the nonfaulty parties send a broadcast in
a single one of those rounds is:(

1− 2

n

)n−tr
≤
(

1− 2

n

)n
2

≤ e−1

Therefore, the probability that none of the nonfaulty parties broadcast some
message in any of those dc lnne rounds is no greater than:

(
e−1
)dc lnne ≤

(
e−1
)c lnn

= n−c

Now define a failure event in which either there exists a nonfaulty party whose
aggregated DKG transcript after O(c log n) rounds doesn’t consist of at least t+1
contributions, or no nonfaulty party broadcasts a message in the dc lnne rounds
after all of them have t + 1 contributions in their aggregated DKG transcript.
Using the union bound, this failure event occurs with probability no greater
than 1

p(n) +n−c. Note that if neither of those events occur, some nonfaulty party

broadcasts a message in O(c log n) rounds, completing the proof.

C Rekeyability Implies Security Preservation

In this section, we prove that using a key-expressable DKG for several rekeyable
primitives implies that the DKG preserves security as well. In particular, we
show that provided that the signing/encryption shares are identical to sig-
natures/encryptions, IND-CPA is preserved for rekeyable encryption schemes,
EUF-CMA is preserved for rekeyable signature schemes, and both uniqueness
and unpredictability are preserved for rekeyable VUFs. We then show in Ap-
pendix D that common constructions such as El-Gamal encryption and BLS
signatures are rekeyable, as is our VUF from Section 7.
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C.1 Encryption

We show that any IND-CPA secure and rekeyable encryption scheme (KeyGen,
Encrypt,Decrypt) such that Encryptpk and EncryptSharepk are identical is IND-
CPA secure under a key-expressable DKG. As a reminder, the IND-CPA security
game is defined as follows:

main GameA(1λ)

(pk, sk)
$←− KeyGen(1λ)

b
$←− {0, 1}

b′
$←− AEncrypt(pk)

return b = b′

OEncrypt
pk (m0,m1)

return Encrypt(pk,mb)

Lemma 3. If Encrypt is rekeyable with respect to the public key, and if Encryptpk =
EncryptSharepk, then any key-expressable DKG is also security-preserving for
IND-CPA security.

Proof. Let A be an adversary playing the IND-CPA security game with a key-
expressable DKG. We design B such that

AdvIND-CPA,DKG-Game
A (λ) ≤ AdvIND-CPA

B (λ) + negl(λ).

To start, B takes as input a public key pk1. It runs (transcript, pk, α, pk2, sk2)
$←−

SimDKG(Sim, I,N), acting as Sim to interact with A; recall that by the definition
of key expressability we now have that pk = f(α, pk1, pk2). When A queries
Encrypt on (m0,m1), B queries its own oracle Encrypt on (m0,m1) to get a
ciphertext c. It then returns rekey(α, pk1, sk2, c). When A returns b′ then B also
returns b′.

By the rekeyability of Encrypt,

rekey(α, pk1, sk2,Encrypt(pk1,mb; r)) = Encrypt(fpk(α, pk1, pk2),mb; r).

B thus perfectly simulates the Encrypt oracle that A expects, and key express-
ability implies that it also perfectly simulates the DKG. It thus wins whenever
A does.

C.2 Signatures

We show that any existentially unforgeable and rekeyable signature scheme
(KeyGen,Sign,Verify) with Signsk = SignSharesk is existentially unforgeable under
a key-expressable DKG. As a reminder, the EUF-CMA security game is defined
as follows:

main GameA(1λ)

(pk, sk)
$←− KeyGen(1λ)

Q← ∅
(m,σ)

$←− ASign(pk)
return m 6∈ Q ∧ Verify(pk,m, σ)

OSign
sk (m)

σ
$←− Sign(sk,m)

Q← Q ∪ {m}
return σ
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Lemma 4. If (Sign,Verify) is rekeyable with respect to the secret key and if
Signsk = SignSharesk, then any key-expressable DKG is also security-preserving
for EUF-CMA security.

Proof. Let A be an adversary playing the EUF-CMA security game with a key-
expressable DKG. We design B such that

AdvEUF-CMA,DKGGame
A (λ) ≤ AdvEUF-CMA

B (λ) + negl(λ).

To start, B takes as input a public key pk1. It then runs (transcript, pk, α, pk2, sk2)
$←−

SimDKG(Sim, I,N), acting as Sim to interact with A; by the definition of key
expressability we now have that pk = fpk(α, pk1, pk2). When A queries Sign
on m, B queries its own oracle Sign on m to get a signature σ. It then re-
turns rekey(α, pk1,−sk2,m, σ). When A returns (m,σ) then B returns y ←
rekey( 1

α , pk,
−sk2
α ,m, σ).

By the rekeyability of Sign,

rekey(α, pk1, sk2,m,Sign(sk1,m; r)) = Sign(fsk(α, sk1, sk2),m; r).

B thus perfectly simulates the Sign oracle that A expects, and key expressability
implies that it also perfectly simulates the DKG. If A has not queried on m then
neither has B, and by the rekeyability of (Sign,Verify) we have that

Verify(pk,m, σ) = Verify

(
fpk(

1

α
, pk,−pk2

α
),m, rekey(

1

α
, pk,

−sk2

α
,m, σ)

)
= Verify(

1

α
(αpk1 ⊕ pk2)⊕ −pk2

α
,m, y)

= Verify(pk1 ⊕
pk2

α
⊕ −pk2

α
,m, y)

= Verify(pk1,m, y).

The output y of B thus verifies under pk1 whenever A’s output (m,σ) verifies
under pk, so B wins whenever A wins.

C.3 VUFs

We show that any unique, unpredictable, and rekeyable VUF scheme with VUF.Signsk =
VUF.SignSharesk is unique and unpredictable under a key-expressable DKG.

Lemma 5. If (VUF.Sign,VUF.Ver) is rekeyable with respect to the secret key,
VUF.Signsk = VUF.SignSharesk, and VUF.Eval is rekeyable with respect to the se-
cret key, then any key-expressable DKG is also security-preserving for the unique-
ness and unpredictability games for a VUF.

Proof. To prove that uniqueness is preserved, we observe that the adversary
picks the public key pk in the uniqueness game. This renders the DKG setup
irrelevant, meaning uniqueness holds regardless.
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To prove that unpredictability is preserved, let A be an adversary playing
the VUF unpredictability game with a key-expressable DKG. We design B such
that

Advpredict,DKGGame
A (λ) ≤ AdvpredictB (λ) + negl(λ).

To start, B takes as input a public key pk1. It then runs (transcript, pk, α, pk2, sk2)
$←−

SimDKG(Sim, I,N), acting as Sim to interact with A; by the definition of key ex-
pressability we now have that pk = fpk(α, pk1, pk2). When A queries VUF.Sign
on m, B queries its own oracle VUF.Sign on m to get vuf. It then returns
rekeyVUF.Sign(α, pk1, sk2,m, vuf). When A returns (m, y) then B returns z ←
rekeyVUF.Eval(

1
α , pk,

−sk2
α , (m, y)).

By the rekeyability of VUF.Sign, we have that

rekey(α, pk1, sk2,m,VUF.Sign(crsvuf , sk1,m; r))
= VUF.Sign(crsvuf , fsk(α, sk1, sk2),m; r),

so B perfectly simulates A’s queries. If A has not queried on m then nei-
ther has B. If we define the other winning condition of the unpredictability
game as an auxiliary function 0/1 ← VUF.Ver′(crsvuf , sk,m, y) that outputs
1 if VUF.Eval(crsvuf , sk,m) = y and 0 otherwise, then by the rekeyability of
(VUF.Eval,VUF.Ver′) we have that

VUF.Ver′(crsvuf , sk,m, y)

= VUF.Ver′
(
crsvuf , fsk(

1
α , sk,−

sk2
α ), rekeyVUF.Eval(

1
α , pk,

−sk2
α ,m, y)

)
= VUF.Ver′(crsvuf ,

1
α (αsk1 ⊕ sk2)⊕ −sk2α , z)

= VUF.Ver′(crsvuf , sk1 ⊕ sk2
α ⊕

−sk2
α , z)

= VUF.Ver′(crsvuf , sk1, z).

Thus B wins whenever A wins.

D Rekeyable Cryptographic Primitives

In this section, we show that several cryptographic constructions are rekeyable,
and thus can be securely instantiated using a key-expressable DKG, as we showed
in Appendix C. Specifically we cover the El-Gamal encryption scheme, the BLS
signature scheme, and our VUF scheme. The first two of these have field elements
as secret keys so can use the Pedersen DKG or Fouque-Stern DKG, while the
latter has group elements as secret keys so can use our DKG. In general we
can cover schemes that have some degree of malleability but not those that do
not. For example, we can cover the BLS signature scheme that is susceptible to
rogue key attacks, but we do not know how to extend our methods to Schnorr
signatures. This we consider to be somewhat reassuring because there is a known
attack against applying the Pedersen DKG to Schnorr signatures assuming a
concurrent adversary [10].
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D.1 El-Gamal Encryption

El-Gamal encryption consists of the following three algorithms:

– (pk, sk)
$←− KeyGen(G1) : Choose x

$←− F. Return pk = gx1 and sk = x.

– (c1, c2)
$←− Encrypt(pk,m): Choose r

$←− F. Return c1 = gr1 and c2 = mpkr.
– m← Decrypt(sk, (c1, c2)) : Return m = c2c

−sk
1 .

We now prove Corollary 1, which states that El-Gamal preserves IND-CPA
security when instantiated with the Pedersen or Fouque-Stern DKG.

Proof. This follows directly from Lemma 3, Theorems 3 and 4, and the fact that
the El-Gamal encryption scheme is rekeyable, using α = 1 (as this is its value
for both DKGs), fpk(pk1, pk2) = pk1 · pk2, and fsk(sk1, sk2) = sk1 + sk2.

To see, this we define rekey for Encrypt as follows:

rekey(pk1, sk2, (c1, c2)) = (c1, c2c
sk2
1 )

Observe that

Decrypt(sk1, (c1, c2)) = c2c
−sk1
1

Decrypt(sk1 + sk2, rekey(pk1, sk2, (c1, c2))) = Decrypt(sk1 + sk2, (c1, c2c
sk2
1 )) = c2c

−sk1
1 ,

so (Encrypt,Decrypt) is rekeyable with respect to the public key. Observe also
that

rekey(pk1, sk2,Encrypt(pk1,m; r)) = rekey(pk1, sk2, (g
r
1,m·pk

r
1)) = (gr1,m·(pk

r
1pk

r
2))

and is thus equal to Encrypt(pk1 · pk2,m; r).

D.2 BLS Signatures

A BLS signature consists of the following three algorithms:

– (pk, sk)
$←− KeyGen(bp) : Choose x

$←− F. Set pk = ĥx1 and sk = x. Return
(pk, sk).

– σ
$←− Sign(m, sk :) Compute Z = HashG1(m). Return Zx.

– 0/1← Verify(pk,m, σ) : Compute Z = HashG1
(m). Check e(Z, pk) = e(σ, ĥ1).

Return 1 if check passes, else return 0.

We now prove Corollary 2, which states that BLS preserves EUF-CMA se-
curity when instantiated with the Pedersen or Fouque-Stern DKG.

Proof. This follows directly from Lemma 4, Theorems 3 and 4, and the fact that
the BLS signature scheme is rekeyable, using α = 1 (as this is its value for both
DKGs), fpk(pk1, pk2) = pk1 · pk2, and fsk(sk1, sk2) = sk1 + sk2.

To see this, we define rekey for Sign as follows:

rekey(pk1, sk2,m, σ) = σ · Hash(m)−sk2
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Observe that

Verify(pk1 · pk2,m, σ) = 1 ⇔ e(pk1 · pk2,Hash(m)) = e(g1, σ)
Verify(pk1,m, rekey(pk1, sk2,m, σ)) = 1⇔ e(pk1,Hash(m)) = e(g1, σHash(m)−sk2)

⇔ e(pk1 · pk2,Hash(m)) = e(g1, σ),

so (Sign,Verify) is rekeyable with respect to the secret key. Observe also that

rekey(pk1, sk2,Sign(sk1 +sk2,m)) = rekey(pk1, sk2,Hash(m)sk1+sk2) = Hash(m)sk1

and is thus equal to Sign(sk1,m).

D.3 Our VUF

We now prove Corollary 3, which says that our VUF from Section 7 preserves
its security when using our DKG.

Proof. This follows directly from Lemma 5, Theorem 2, and the fact that the
VUF scheme is rekeyable.

To see this, we define rekeyVUF.Sign as follows:

rekeyVUF.Sign(pk1, sk2,m, (π1, π2, π3, π4, π̂1, π̂2))

= (π1g
α
1 , π2Hash(m)α, π3g

β
1 , π4Hash(m)β , π̂1ĥ

−α
1 ĥ−β2 , sk−1

2 π̂2ĥ
−α
3 ĥ−β4 )

Observe for Z = Hash(m) that

e(g1, π̂1ĥ
−α
1 ĥ−β2 )e(π1g

α
1 , ĥ1)e(π3g

β
1 , ĥ2) = e(g1, π̂1)e(π1, ĥ1)e(π3, ĥ2)

e(Z, π̂1ĥ
−α
1 ĥ−β2 )e(π2Z

α, ĥ1)e(π4Z
β , ĥ2) = e(Z, π̂1)e(π2, ĥ1)e(π4, ĥ2)

e(g1, π̂2sk
−1
2 ĥ−α3 ĥ−β4 )e(π1g

α
1 , ĥ3)e(π3g

β
1 , ĥ2) = e(pk−1

2 , ĥ1)e(g1, π̂2)e(π1, ĥ3)e(π3, ĥ2)

Thus m and (π1, π2, π3, π4, π̂1, π̂2) verify under pk1 + pk2 if and only if

m, rekeyVUF.Sign(pk1, sk2,m, (π1, π2, π3, π4, π̂1, π̂2))

verifies under pk1. Furthermore, rekey(pk1, sk2,VUF.Sign(bp, sk1 + sk2,m)) is
identical to VUF.Sign(bp, sk1,m).

We define rekeyVUF.Eval as follows:

rekeyVUF.Eval(pk1, sk2,m, T ) = T · e(Hash(m), sk−1
2 ).

Observe that

e(Hash(m), sk1) = VUF.Eval(sk1,m)
e(Hash(m), sk1) = rekey(pk1, sk2,m,VUF.Eval(sk1 + sk2,m))

so the two outputs are identical.
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The Pedersen DKG

1. Each party Pi chooses a random polynomial fi(z) over F of degree t

fi(z) = ai,0 + ai,1X + · · ·+ ai,tX
t

and broadcasts Xi,k = gai,k for k = 0, . . . , t. Denote ai,0 by xi and Xi,0 by
yi. Each Pi computes x̄i,j = fi(ωj) for j = 1, . . . , n and sends x̄i,j secretly to
party Pj .

2. Each party Pj verifies the shares they received from the other parties by
checking that

gx̄i,j =

t∏
k=0

(Xi,k)ω
k
j

If the check fails for an index i then Pj broadcasts a complaint against Pi.
3. If more than t parties complain against a party Pi then that party is disqual-

ified. Otherwise Pi reveals the share x̄i,j for each complaining parties Pj . If
any of the revealed shares fails the equation, Pi is disqualified. The share of a
disqualified party Pi is set to 1.

4. The public value y is computed as y =
∏n
i=1 yi.

Fig. 6. Pedersen’s Distributed Key Generation protocol.

E Specification and Security of Alternative DKGs

E.1 Background: Alternative DKGs constructions

We provide an overview of the Pedersen DKG construction in Figure 6 and the
Fouque-Stern DKG construction in Figure 7.

E.2 Security proof for Theorem 3

We design an adversary B that takes as input pk1 such that whenever the DKG
outputs pk, B ouputs a, sk2 such that the associated public key pk2 satisfies
pk = αpk1 + pk2. Suppose B receives input pk1 = g2.

First B runs the DKG with A. Let IB ⊂ [1, n] be the set of corrupted (i.e.
“bad”) parties and IG ⊂ [1, n] be the set of uncorrupted (“good”) parties. As-
sume without loss of generality that party Pk is uncorrupted i.e. k ∈ IG. The
adversary B follows the DKG protocol on behalf of the parties Pi ∈ IG/{k} as
prescribed, but for party Pk B simulates the adversarial view of this party’s
output, so that public view yk broadcasted by Pk is equal to g2.

When queried on Pi for i ∈ IG/{k} the simulator samples ai
$←− F and

computes yi = gai1 . They continue to return the public values Xi,j and the
private values x̄i,j honestly.

42



The Fouque Stern DKG

The Fouque Stern DKG relies on

– A public key infrastructure where the public keys pk1, . . . , pkn consist of
(Nj , Gj) for 1 ≤ j ≤ n where Nj is an RSA modulus and Gj has order
Nj modulo N2

j .
– The Paillier encryption scheme [53], where messages m ∈ F are encrypted as

Encrypt(pkj ,m) = Gmj u
Nj mod N2

j , where u us sampled randomly from Z∗Nj .
– A proving system with public parameters G1 to show that (y, Y ) ∈ G×ZN2

j
is

such that y = gm1 and Y is a Paillier encryption of m under public key pkj . The

prover computes ciphertexts as follows: (1) choose random r
$←− F and s

$←− Z∗Nj
; (2) set τ = (gr1 , G

r
js
Nj mod N2

j ); (3) compute e = Hash(g,Gj , y, Y, τ); (4)
set z = r + ex and w = sue mod Nj ; (5) return (e, z, w). The verifier checks
that e = Hash(g,Gj , y, Y, g

zy−e, Gzjw
NjY −e) and returns 1 if it is.

The Fouque Stern DKG works as follows.

1. Each party Pi chooses a random polynomial fi(z) over F of degree t

fi(z) = ai,0 + ai,1X + · · ·+ ai,tX
t

and computes x̄i,j = fi(ωj) for j = 1, . . . , n. Denote ai,0 by xi and Xi,0
by yi. Each party broadcasts yi, Xi,k = gai,k for k = 1, . . . , t, Ai,j = gx̄i,j

for j = 1, . . . , n, Yi,j = Encrypt(pkj , x̄i,j) for j = 1, . . . , n, and πi,j =
Prove(G1, (pkj , Ai,j , Yi,j), (x̄i,j , ui,j)).

2. Each party verifies the shares by checking that

Verify(G1, (pkj , Ai,j , Yi,j), πi,j) = 1

for all i, j. They further choose α
$←− F and verify that

t∏
k=0

Xαk

i,k =

n∏
k=1

A
`k(α)
i,k

for all i. If the check fails for an index i then Pi is disqualified and their share
is set to 1.

3. The public value y is computed as y =
∏n
i=1 yi.

Fig. 7. Fouque and Stern’s Distributed Key Generation protocol.
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When queried on Pk the adversary B is required to output

g2, Xk,j

that are indistinguishable from a valid output as well as t values x̄k,j . Assume
without loss of generality that 1 6∈ IB and that |IB | = t. Then B behaves as
follows

1. Choose random āj
$←− F for each j ∈ IB and interpolate in the exponent to

find (Xk,0, . . . , Xk,t) such that

Xk,0 = gc01 , . . . , Xk,t = gct1

where
∑t
i=0 ciX

i evaluates to x̄k,j at ωj for j ∈ IB and logg1(A1) at ω1.
Note that these ci values are unknown to the simulator.

This simulation is perfect. If A broadcasts a complaint then reveal the relevant
x̄k,j .

When the adversary returns their share

Xi,0, . . . , Xi,t

If they do not send verifying x̄i,j to any participant in IG then B broadcasts a
complaint. We have that A will be disqualified if they do not publicly send this
value. In that case we set ai = 0. Otherwise, B interpolates the t+ 1 values x̄i,j
to get fi(X) and set ai to equal the 0 coefficient. Note that |IG| ≥ t+ 1 because
t < n/2.

When the DKG phase terminates one is left with the public key

pk = y1 · · · yn

Then B extracts
pk2 =

∏n
j=1,j 6=k yj

sk2 =
∑n
j=1,j 6=k aj

such that pk2 = gsk21 and such that

pk = g2 · pk2 = pk1 · pk2

sk = sk1 + sk2

Thus B returns (1, sk2).

E.3 Security proof for Theorem 4

We design an adversary B that takes as input pk1 such that whenever the DKG
outputs pk, B outputs a, sk2 such that the associated public key pk2 satisfies
pk = αpk1 + pk2. Suppose B receives input pk1 = g2.

First B runs the DKG with A. Let IB ⊂ [1, n] be the set of corrupted (i.e.
“bad”) parties and IG ⊂ [1, n] be the set of uncorrupted (“good”) parties. As-
sume without loss of generality that party Pk is uncorrupted i.e. k ∈ IG. The
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adversary B follows the DKG protocol on behalf of the parties Pi ∈ IG/{k} as
prescribed, but for party Pk B simulates the adversarial view of this party’s
output, so that public view yk broadcasted by Pk is equal to g2.

When queried on Pi for i ∈ IG/{k} the simulator samples ai
$←− F and

computes yi = gai1 . They continue to return the public values Xi,j and the
private values x̄i,j honestly.

When queried on Pk the simulator is required to output

g2, Xk,j , Ak,j , Yk,j , πk,j

that are indistinguishable from a valid output. Assume without loss of generality
that 1 6∈ IB and that |IB | = t. The simulator then behaves as follows

1. Choose random āj
$←− F for each j ∈ IB and interpolate in the exponent to

find (Xk,0, . . . , Xk,t) such that

Xk,0 = gc0 , . . . , Xk,t = gct

where
∑t
i=0 ciX

i evaluates to x̄k,j at ωj for j ∈ IB and logg1(A1) at ω1.
Note that these ci values are unknown to the simulator.

2. Set

Ak,i =

t∏
j=0

X
ωji
k,j

for 1 ≤ i ≤ n.
3. Encrypt x̄k,j for j ∈ IB honestly i.e. Yk,j = Encrypt(pkj , x̄k,j). For j ∈ IG

encrypt a random value i.e. choose mj
$←− F and set Yk,j = Encrypt(pkj ,mj).

4. For j ∈ IB compute πk,j = Prove(G1, (pkj , Ak,j , Yk,j), (x̄k,j , uk,j)) honestly
with respect to the encryptions Yk,j . For each j ∈ IG we must simulate the

proof. Choose ej , zj , wj
$←− F2×ZN2 . Program Hash(g,Gj , Ak,j , Yk,j , g

zjA
−ej
k,j ,

G
zj
j w

Nj
j Y

−ej
k,j ) to return ej and set πk,j = (ej , zj , wj).

By the decisional composite residuosity assumption, the adversary cannot dis-
tinguish the simulated encryptions from real encryptions. The simulated proof is
a perfect simulation provided that A has not already queried Hash() on the rele-
vant values. Because these values are randomised, this happens with probability
no greater than qH/N

2
j .

When the adversary returns their share

yi, Xi, . . . , Xi,t, Ai,1, . . . , Ai,n, Yi,1, . . . , Yi,n, πi,1, . . . , πi,n

for each j ∈ IG decrypt x̄i,j = Decrypt(skj , Yi,j). The probability that Ai,j 6=
g
mi,j
1 is equal to the probability that A forges a proof, which is negligible by the

decisional composite residuosity assumption. Set ai = x̄i,0.
By the synchrony assumption the DKG phase will eventually terminate, and

one is left with the public key

pk = y1 · · · yn

45



Then B extracts
pk2 =

∏n
j=1,j 6=k yj

sk2 =
∑n
j=1,j 6=k aj

such that pk2 = gsk21 and such that

pk = pk1 · pk2

sk = sk1 + sk2

for pk = gsk1 . Thus B returns (1, sk2).

F Proofs of VUF Security

In this section, we provide proofs of the security of our VUF from Section 7. We
begin with a proof of Theorem 5.

Proof. We must show that no adversary A, even an adversary who may choose
the public key, can convince a verifier unless their two outputs derive the same
values. To do this, we construct an adversary B such that whenever A breaks
uniqueness, B breaks the SXDH assumption. Thus

AdvuniqueA (1λ) ≤ AdvSXDH
B (1λ).

The adversary B receives an SXDH challenge (ĥ1, ĥ2, ĥ3, ĥ4) that is either

equal to (ĥ1, ĥ
ρ
1, ĥ

ξ
1, ĥ

ρξ
1 ) or is randomly generated. They sample û1

$←− G2 and

run A on the input crsvuf = (bp,HashG1 , û1, ĥ1, ĥ2, ĥ3, ĥ4).
When A queries the random oracle HashG1() on m, B2 will first check whether

the response at m is already defined, and if yes return that response. Else B
chooses z at random and returns gz1 .

When A returns the public key pk, the VUF input m, and the signatures σ1

and σ2, B checks whether A’s responses derive different values and both verify.
If yes they return 1 indicating that they believe (ĥ1, ĥ2, ĥ3, ĥ4) is an SXDH

challenge. If not they return 0 indicating they believe (ĥ1, ĥ2, ĥ3, ĥ4) is not an
SXDH challenge.

We argue that if B’s inputs are SXDH instances then it is statistically impos-
sible for A to output two verifying responses that derive different values. This
implies that AdvuniqueA (1λ) ≤ AdvSXDH

B (1λ).
Formally, B behaves as follows.

B(bp,HashG1 , ĥ2, ĥ3, ĥ4)

û1
$←− G2

crsvuf ← (bp,HashG1 , û1, ĥ2, ĥ3, ĥ4)

(pk,m, σ1, σ2)
$←− A(crsvuf)

if VUF.Derive(crsvuf , pk,m, σ1) = VUF.Derive(crsvuf , pk,m, σ2) return 0
if VUF.Ver(pk,m, σ1) = 0 or VUF.Ver(pk,m, σ2) = 0 return 0
else return 1
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If (ĥ1, ĥ2, ĥ3, ĥ4) are random then this is a perfect simulation of the uniqueness
game. If instead

(ĥ1, ĥ2, ĥ3, ĥ4) = (ĥ1, ĥ
ρ
1, ĥ

ξ
1, ĥ

ρξ
1 )

then whenever A returns a verifying signature σ = (π1, π2, π3, π4, π̂1, π̂2), we

have that HashG1
(m) = gz1 and e(A, ĥ1)z = e(gz1 , π̂2)e(π2, ĥ3)e(π4, ĥ4). Hence if

A outputs two verifying signatures then they must derive the same value.
To see that A cannot cheat if the input is an SXDH challenge, observe that by

dividing the third verification equation by ξ times the first verification equation,
i.e.,

VE.3− ξVE.1

we have that

e(pk, ĥ1) = e(g1, π̂2π̂
−ξ
1 )e(π1, ĥ3ĥ

−ξ
1 )e(π3, ĥ4ĥ

−ξ
2 ).

Also ĥ3ĥ
−ξ
1 = 1 and ĥ4ĥ

−ξ
2 = 1 implying that

e(pk, ĥ1) = e(g1, π̂2π̂
−ξ
1 )

and that π̂2π̂
−ξ
1 = ĥa1 where a is such that pk = ga1 . Thus

e(Z, π̂2π̂
−ξ
1 ) = e(Z, sk).

Now observe that by multiplying the second verification equation by ξ we
have that

1 = e(Z, π̂ξ1)e(π2, ĥ
ξ
1)e(π4, ĥ

ξ
2)

and
e(Z, π̂−ξ1 ) = e(π2, ĥ3)e(π4, ĥ4).

Putting the two together we have that

e(Z, sk) = e(Z, π̂2π̂
−ξ
1 ) = e(Z, π̂2)e(π2, ĥ3)e(π4, ĥ4)

and A has output the unique outcome.

Next, we also prove Theorem 6.

Proof. Let A be an adversary playing in the unpredictability game. In particular,
A is given a public key pk = ga1 as input and aims to output some m and

e(HashG1
(m), ĥ1)a that they have not queried the signer on previously. We first

transition into a game where A receives a simulated reference string using an
adversary B0 against SXDH. We then demonstrate that there exists an adversary
B1 that can program the oracle HashG1

and that succeeds in breaking the BDH
assumption with advantage 1

qH
AdvsigA (1λ) where qH is the total number of queries

A makes to the oracle. Thus

AdvunpredictableA (1λ) ≤ AdvSXDH
B0

(1λ) + qHAdvBDH
B1

(1λ).
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Game unpredictable to Game 1: Let Game1
A(1λ) denote A playing a mod-

ified unforgeability game where, instead of A receiving a randomly distributed
reference string, A receives a simulated reference string of the form

(ĥ1, ĥ
ρ
1, ĥ

ξ
1, ĥ

ρξ+1
1 ).

We construct an adversary B0 against the SXDH assumption in the first source
group such that

Pr[GameunpredictableA (1λ)]− Pr[Game1
A] ≤ AdvSXDH

B0
.

The adversary B0 uses an SXDH challenge to determine the form of the com-
mon reference string that it passes to A. They receive an SXDH challenge
(ĥ1, ĥ2, ĥ3, ĥ4) that is either equal to (ĥ1, ĥ

ρ
1, ĥ

ξ
1, ĥ

ρξ
1 ) or is randomly generated.

If A succeeds it returns 0, else it returns 1. Formally B0 behaves as follows.

B0(bp, ĥ2, ĥ3, ĥ4)

crsvuf ← (bp,HashG1
, ĥ2, ĥ3, ĥ4ĥ1)

(pk, sk)
$←− VUF.Gen(crsvuf)

(m, y) =
$←− AVUF.Sign(crsvuf , pk)

if y = VUF.Eval(crsvuf , sk,m) and m 6∈ Q return 1
else return 0

VUF.Sign(m)

σ ← VUF.Sign(crsvuf , sk,m)
add m to query set Q
return σ

If ĥ4 is random then B0 perfectly simulates GameunpredictableA (1λ) and succeeds

whenever A fails. If (ĥ2, ĥ3, ĥ4) = (ĥρ1, ĥ
ξ
1, ĥ

ρξ
1 ) then B0 perfectly simulates

Game1
A(1λ) and succeeds whenever A succeeds.

Game 1:
We design an adversary B1 against the BDH assumption that works as follows.
As input B1 receives some

(g1, g2, g3, ĥ1, û1, û2) = (g1, g
α
1 , g

β
1 , ĥ1, ĥ

γ
1 , ĥ

αγ
1 )

and aims to compute e(g1, ĥ1)αβ . Let qH be the maximum number of unique
queries that A makes to HashG1 . Then B1 chooses i at random from [1, qH ]
and samples a simulated reference string crsvuf and retains a trapdoor (ρ, ξ) for
simulating signatures. Then B1 runs A on input crsvuf and pk = (g2, û2).

WhenA queries the random oracle HashG1
(·) onm, B2 will first check whether

the response at m is already defined, and if yes return that response. If m is the
ith unique query, B returns g3. Else B chooses z at random and returns gz1 .
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When A queries the signing oracle on m, B1 will first query HashG1
(m) and

if the response is g3 then B1 aborts. Else B1 extracts z from the oracle such that
HashG1(m) = gz1 and uses (ρ, ξ, z) to compute a signature.

When A returns an evaluation (m, y), B1 aborts if m is not the ith query to
HashG1

(·). Else B1 returns y.

Formally, B1 behaves as follows.

B1(bp, g2, g3, û1, û2)

i
$←− [1, qH ], H ← ∅

ρ, ξ
$←− F

crsvuf ← (bp,HashG1 , û1, ĥ
ρ
1, ĥ

ξ
1, ĥ

ρξ+1
1 )

(m, y)
$←− AVUF.Sign(crsvuf , (g2, û2))

if m is not the ith query to HashG1(·) return ⊥
return y

HashG1
(m)

if (m,Z, z) ∈ H return Z
if ith unique query z ← ⊥, Z ← g3

else z
$←− F, Z ← gz1

add (m,Z, z) to query set H
return Z

VUF.Sign(m)

Z ← HashG1(m)
select (m,Z, z) from H
if z = ⊥ return ⊥
α, β

$←− F
π̂1, π̂2 ← ĥα1 , ĥ

β
1

π1 ← gβρ−α−αρξ1 g−ρ2

π2 ← πz1
π3 ← gαξ−β1 g2

π4 ← πz3
return (π1, π2, π3, π4, π̂1, π̂2)

We see that VUF.Sign outputs signatures that are distributed identically to those
in Game1

A(1λ). This is because π̂1, π̂2 are distributed uniformly at random. Given
π̂1, π̂2 there exists unique π1 and π3 that satisfy both the first and third verifica-
tion equations. Similarly, given π̂1, π̂2 there exists unique π2 and π4 that satisfy
both the second and fourth verification equations.

Since VUF.Sign outputs signatures that are distributed identically to those
in Game1

A(1λ) we have that

AdvGame1

A (1λ) ≤ qHAdvBDH
B1

(1λ).

Indeed B1 succeeds whenever A returns an evaluation on the message pro-
grammed to equal g3 i.e. when A returns

VUF.Eval(crsvuf , sk,mi) = e(HashG1
(m), sk) = e(g3, ĥ

α
1 ) = e(g1, ĥ1)αβ

This happens with probability 1
qH

.
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G Optimized VUF

The construction described in Section 7 has 4 G1 and 2 G2 elements for each
VUF, and requires the verifier to perform 10 pairings to check correctness. An
additional 3 pairings are performed by the deriver in obtaining the unpredictable
component. Here we discuss an optimisation that reduces VUF to just 2 G1

elements, which is only twice as expensive as the BLS signature scheme, and
unlike BLS we can thresholdise our scheme using our more efficient DKG that
outputs group elements as secret key shares.

Our optimisation works by transferring some elements of the signature into
the public key, and allowing the private key to contain some field elements. The
observant reader might be thinking that this removes a lot of the motivation for
our VUF because by having a private key contain field elements we are no longer
fully structure preserving. Nonetheless, we argue that our optimised construction
is useful, because these field elements are entirely independent of the original
private key. Thus in our threshold scheme, a user can split their public key into
components derived in the DKG and components they chose themselves. The
components derived in the DKG consist entirely of group elements.

G.1 Construction

Our optimised VUF construction is given in Figure 8. We prove in Theorem 7
and Theorem 8 that the optimised construction retains its uniqueness and un-
predictability. The intuition behind our optimisations stems from the fact that
the following checks by the verifier do not involve message-specific elements:

1 = e(g1, π̂1)e(π1, ĥ1)e(π3, ĥ2) (5)

e(pk, ĥ1) = e(g1, π̂2)e(π1, ĥ3)e(π3, ĥ4) (6)

and thus the signature elements π̂1, π̂2, π1 and π3 can be a part of the public key
instead of the signature.

Our public key consists of the additional elements

(p1, p2, p̂1, p̂2) = (gα1 , g
β
1 , ĥ

−α
1 ĥ−β2 , ĥa1ĥ

−α
3 ĥ−β4 )

where ĥa1 , α, β are kept secret. Our VUF consists only of the π1 and π3 compo-
nents from the unoptimised VUF, which we relabel to be π1 and π2.

Our verification algorithm is now split into two separate algorithms: one to
check that the public key is well-formed and the other to check that the VUF
is well-formed. Specifically we introduce a new VUF.KeyVer function. When a
verifier receives a public key pk for the first time, they run VUF.KeyVer(crsvuf , pk)
and cache the result, so subsequent executions of VUF.Ver(crsvuf , pk,m, σ) receive
a smaller VUF of 2 G1 elements and perform only 3 pairings.

The benefits in how this can speed up our threshold VUF are mostly seen by
the aggregator. We will still require that the final aggregated VUF is unoptimised
because the verifier does not know which public keys contributed to the outcome.
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However the shares of the VUF that are communicated to the aggregator by the
signing parties can be optimised. In particular, the aggregator aggregates the
public key components (which it only sees once) together with the per-message
VUF shares (which are approximately 1/4 the size). They can also check the
well-formedness of the contributions using 3 pairings rather than 10.

Setup(bp,HashG1)

û1, ĥ2, ĥ3, ĥ4
$←− G2

crsvuf ← (bp,HashG1 , û1, ĥ2, ĥ3, ĥ4)
return crsvuf

VUF.Gen(crsvuf)

a, α, β
$←− F

pk =

(
A ∈ G1, û2 ∈ G2,
p1, p2 ∈ G1, p̂1, p̂2 ∈ G2

)
←
(
ga1 , û

a
1 , g

α
1 , g

β
1 ,

ĥ−α1 ĥ−β2 , ĥa1 ĥ
−α
3 ĥ−β4

)
sk←

(
ĥa1 , α, β

)
∈ G2 × F2

return (pk, sk)

VUF.Sign(crsvuf , ŝk,m)

(ĥa1 , α, β ∈ G2 × F2)← parse(sk)
Z ← HashG1(m)

π1, π2 ← Zα, Zβ

return (π1, π2)

VUF.Derive(crsvuf , pk,m, σ)(
A ∈ G1, û2 ∈ G2,
p1, p2 ∈ G1, p̂1, p̂2 ∈ G2

)
← parse(pk)

(π1, π2 ∈ G2
1)← parse(σ)

Z ← HashG1(m)

return e(Z, p̂2)e(π1, ĥ3)e(π2, ĥ4)

VUF.KeyVer(crsvuf , pk)(
A ∈ G1, û2 ∈ G2,
p1, p2 ∈ G1, p̂1, p̂2 ∈ G2

)
← parse(pk)

check:

1 = e(g1, p̂1)e(p1, ĥ1)e(p2, ĥ2)

e(A, ĥ1) = e(g1, π̂2)e(π1, ĥ3)e(π3, ĥ4)
return 1 if all checks pass, else return 0

VUF.Ver(crsvuf , pk,m, σ)(
A ∈ G1, û2 ∈ G2,
p1, p2 ∈ G1, p̂1, p̂2 ∈ G2

)
← parse(pk)

(π1, π2 ∈ G2
1)← parse(σ)

Z ← HashG1(m)

check 1 = e(Z, p̂1)e(π1, ĥ1)e(π2, ĥ2)
return 1 if all checks pass, else return 0

Fig. 8. Optimized verifiable unpredictable function

G.2 Security Proofs

Theorem 7. The algorithm in Figure 8 is a unique VUF under the SXDH as-
sumption in the random oracle model.

Proof. The proof goes through exactly the same as for Theorem 5 except for the
following changed. When distinguishing an SXDH challenge, the adversary B
first calls both VUF.KeyVer and VUF.Ver (instead of just VUF.Ver), and returns
0 if either checks fail.
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Theorem 8. The algorithm in Figure 8 is an unpredictable VUF under the
SXDH and the BDH assumption in the random oracle model.

Proof. The first part of the proof remains the same. We transition from GameAunpredictable
to GameA1 , where A receives a simulated reference string of the form

(ĥ1, ĥ
ρ
1, ĥ

ξ
1, ĥ

ρξ+1
1 ).

B1 is also defined differently, since the pk it runs A with contains more elements.
Formally B1 behaves as follows.

B1(bp, g2, g3, û1, û2)

i
$←− [1, qH ], H ← ∅

ρ, ξ, α, β
$←− F

crsvuf ← (bp,HashG1
, ĥρ1, ĥ

ξ
1, ĥ

ρξ+1
1 )

pk = (g2, û1, û2, p1, p2, p̂1, p̂2)

← (g2, û1û2, g
βρ−α−αρξ
1 g−ρ2 , gαξ−β1 , ĥα1 , ĥ

β
2 )

(m,π)
$←− AVUF.Sign(crsvuf , pk)

if m is not the ith query to HashG1
() return ⊥

return VUF.Derive(crsvuf ,m, π)

HashG1(m)

if (m,Z, z) ∈ H return Z
if ith unique query z ← ⊥, Z ← g3

else z
$←− F, Z ← gz1

H ← H ∪ {(m,Z, z)}
return Z

VUF.Sign(m)

Z ← HashG1
(m)

select (m,Z, z) from H
if z = ⊥ return ⊥
π1 ← pz1
π2 ← pz2
return (π1, π2)

As in Theorem 6, we see that VUF.Sign outputs signatures that are dis-
tributed identically to those in GameA1 (1λ). This is because given p̂1, p̂2, there
are unique π1 and π2 that satisfy the verification equation. The rest of the proof
is the same, arriving at the following conclusion.

AdvunpredictableA (1λ) ≤ AdvSXDH
B0

(1λ) + qHAdvBDH
B1

(1λ)
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