
AN EVOLUTION OF MODELS
FOR ZERO-KNOWLEDGE PROOFS

SARAH MEIKLEJOHN (GOOGLE & UCL)

INTRODUCTION

This talk will cover the rapid evolution of zero-knowledge proofs
according to their models and applications

For an introduction to other aspects, check out:
• https://zkproof.org/
• Jens Groth’s excellent invited talk at Crypto 2021

2

INTRODUCTION TO ME 👋

I’m a professor at UCL and (recently) a researcher at Google

I try to both construct privacy-enhancing technologies and
empirically measure their success (e.g. I have done a lot of research
on de-anonymizing cryptocurrencies)

At Google I work on the Certificate Transparency team, looking at
verifiable data structures (like Merkle trees)

3

INTRODUCTION TO ZERO KNOWLEDGE

In a zero-knowledge proof [GMR89], a prover wants to convince a
verifier that there exists a witness w corresponding to some
instance x of a language LR (witness w for the statement (x,w)∈R)

In a non-interactive zero-knowledge proof (NIZK) [BFM88], this is
done without any interaction

Soundness: hard for the prover to convince the verifier if x∉LR

Zero knowledge: the verifier learns nothing except that x∈LR

Prove(x, w) → π Verify(x, π) → accept/reject

π

M

2M

N
2N

🔍

SOUNDNESS: THE VERIFIER CAN SEE WALDO FOR THEMSELVES!

ZERO KNOWLEDGE: THE BOOK COULD BE ANYWHERE

DEFINING ZERO KNOWLEDGE

In a zero-knowledge proof [GMR89], a prover wants to convince a
verifier that there exists a witness w corresponding to some
instance x of a language LR (witness w for the statement (x,w)∈R)

In a non-interactive zero-knowledge proof (NIZK) [BFM88], this is
done without any interaction

Soundness: hard for the prover to convince the verifier if x∉LR

Zero knowledge: the verifier learns nothing except that x∈LR

Prove(x, w) → π Verify(x, π) → accept/reject

π

DEFINING ZERO KNOWLEDGE

In a zero-knowledge proof [GMR89], a prover wants to convince a
verifier that there exists a witness w corresponding to some
instance x of a language LR (witness w for the statement (x,w)∈R)

In a non-interactive zero-knowledge proof (NIZK) [BFM88], this is
done without any interaction

Soundness: hard for the prover to convince the verifier if x∉LR

Zero knowledge: the verifier learns nothing except that x∈LR

Prove(x, w) → π Verify(x, π) → accept/reject

π

DEFINING ZERO KNOWLEDGE

crs, x, w
Prove(crs, x, w) → π

crs, x
Verify(crs, x, π) → accept/reject

π

crs

This common reference string needs to exist [GO94]; can be
• random (trustless setup) or structured (trusted setup)
• specific to a given relation or universal

11

A ZERO-KNOWLEDGE SIMULATOR

crs, x, w
Prove(crs, x, w) → π

crs, x
Verify(crs, x, π) → accept/reject

π

crs

Sim(crs, x) → πτs,

OR ?

Zero knowledge: the verifier can’t tell if it’s interacting with the
prover or with a simulator (who doesn’t know a witness)

• Perfect zero knowledge if the distributions are identical (not
just indistinguishable)

12

DEFINING ZERO KNOWLEDGE

In a zero-knowledge proof [GMR89], a prover wants to convince a
verifier that there exists a witness w corresponding to some
instance x of a language LR (witness w for the statement (x,w)∈R)

In a non-interactive zero-knowledge proof (NIZK) [BFM88], this is
done without any interaction

Soundness: hard for the prover to convince the verifier if x∉LR

Zero knowledge: the verifier learns nothing except that x∈LR

Prove(x, w) → π Verify(x, π) → accept/reject

π

EXTRACTABILITY

crs, x, w
Prove(crs, x, w) → π

crs, x
Verify(crs, x, π) → accept/reject

π

crs

Ext(crs, x, π) → w s.t. (x,w)∈Rτe,

Extractability: there exists a PT extractor that can do this…
• …for all provers (proof of knowledge)
• …for all PPT provers (argument of knowledge)

14

PROTOCOLS AND PROOF SIZES

CD97

Kilian92

GS08

Linear Polylog

DLOG

Pairings

CRHFs

PROTOCOLS AND PROOF SIZES

CD97

Kilian92

GS08

Linear Sublinear Polylog

DLOG

Pairings

CRHFs

Groth09

Groth10

SUCCINCT
NON-INTERACTIVE

ARGUMENTS (SNARGS)
OF KNOWLEDGE

(SNARKS)

BLOCKCHAIN BASICS

17

A blockchain is an ordered collection of transactions

All transactions in the chain are replayed by all peers (full nodes)
in a network to ensure they agree on its current state

MAINTAINING STATE

18

tx = {ifrom, ito, amt, sig} is valid if
• the sender has enough money (Bal[ifrom] ≥ amt)
• the sender’s signature verifies (Verify(Addr[ifrom], sig, tx) = 1)

Can process tx(Bal): Bal[ifrom] -= amt and Bal[ito] += amt

h0 h1 h2 h3

h01

haddr

pk0

h23

pk1 pk2 pk3

AD
DR

ES
S

TR
EE

h0 h1 h2 h3

h01

hbal

bal0

h23

bal1 bal2 bal3

BALANCE TREE

CHECKING TRANSACTION VALIDITY

19

h0 h1 h2 h3

h01

haddr

pk0

h23

pk1 pk2 pk3

h0 h1 h2 h3

h01

hbal

h23

10 10 1010

tx = {0, 2, 2, sig}
• the sender has enough money (Bal[0] ≥ 2)
• the sender’s signature verifies (Verify(Addr[0], sig, tx) = 1)

PROCESSING TRANSACTIONS

20

h0 h1 h2 h3

h01

haddr

pk0

h23

pk1 pk2 pk3

h0 h1 h2 h3

h01

hbal

8

h23

10 12 10

tx = {iP, iS, 2, sig}
• Bal[ifrom] -= amt and Bal[ito] += amt

PROCESSING TRANSACTIONS

21

h0 h1 h2 h3

h01

haddr

pk0

h23

pk1 pk2 pk3

h0 h1 h2 h3

h01

hbal

8

h23

10 12 10

tx = {iP, iS, 2, sig}
• Bal[ifrom] -= amt and Bal[ito] += amt
• Bal changes, so its root changes from hbal to hbal

MAINTAINING STATE

h0 h1 h2 h3

h01

haddr

pk0

h23

pk1 pk2 pk3

h0 h1 h2 h3

h01

hbal

10

h23

bal1 bal2 bal3

x = (haddr, hbal), w = (Bal, T) ∈ Rvalid ⇔ (1) hbal = root(Bal) (correct root)
and (2) all txs in T are valid (according to haddr) (valid transactions)

x = (haddr, hbal, hbal), w = (Bal, Bal, T) ∈ Rupdate ⇔ (1) hbal = root(Bal) and
hbal = root(Bal) (correct roots) and (2) Bal = txn(txn-1(….(tx0(Bal)…))
(correct state update)

bal0

UPDATING GLOBAL STATE

TXN

TX2

TX2

TX1

TX1

. . .

TX1

TX2

TXN

. . .

HBAL

HADDR

TXN. . .

ADDR, BAL

(haddr, hbal), (Bal, T) ∈ Rvalid?
Bal = txn(txn-1(….(tx0(Bal)…))

BAL

ZK-ROLLUPS

TX2TX1

BAL

HBAL

HADDR

Π

TXN. . .

ADDR, BAL

Verify(srs, (haddr, hbal, hbal), π) = 1?

BAL proof for Rvalid
and Rupdate

light clients (who don’t
maintain the full state)

can also perform this check

ZK-ROLLUPS

TX2TX1

BAL

HBAL

HADDR

Π

TXN. . .

ADDR, BAL

Verify(srs, (haddr, hbal, hbal), π) = 1?

BAL proof for Rvalid
and Rupdate

light clients (who don’t
maintain the full state)

can also perform this checkWE DON’T EVEN CARE ABOUT ZERO KNOWLEDGE!
JUST WANT PROOF TO BE AS SMALL AS POSSIBLE

PROTOCOLS AND PROOF SIZES

CD97

Kilian92

GS08

Linear Sublinear Polylog

DLOG

Pairings

CRHFs

Groth09

Groth10

Constant

Lattices
STATE OF THE ART (GROTH’16)
HAS 3 GROUP ELEMENTS AND

REQUIRES 3 PAIRINGS TO VERIFY

BCC+16
Bulletproofs

Halo

SNARKs [GGPR13]

DV SNARKs

ZKBoo Ligero
STARKs
Aurora

Groth16

Fractal

BISW17,18
GMNO18

Hyrax

LMR19
Libra

SNARKS + BLOCKCHAINS

Having small proofs that can be verified quickly is really useful for
agreeing on a shared state in a scalable way

But, these proofs have their costs
• Substantial prover runtime [BCL20, BCG20, GKR+21]
• Known constant-sized SNARKs require a structured reference

string (SRS), which means relying on trusted third parties

27

PROVER RUNTIME

The number of constraints for a proof system involving hashes
depends hugely on the hash function

PROVING KNOWLEDGE OF X SUCH THAT H(X) = Y

SHA256

PEDERSEN

POSEIDON [GKR+21]

28

SNARKS + BLOCKCHAINS

Having small proofs that can be verified quickly is really useful for
agreeing on a shared state in a scalable way

But, these proofs have their costs
• Substantial prover runtime [BCL20, BCG20, GKR+21]
• Known constant-sized SNARKs require a structured reference

string (SRS), which means relying on trusted third parties

29

GENERATING A REFERENCE STRING

Setup → srs

→ srs

Setup → srs

Setup → urs

TRUSTED SUBVERSION

TRANSPARENT MPC

REFERENCE STRING GENERATION

Setup → srs

In many known systems, Setup also outputs a simulation trapdoor

Setup → (srs, τ)

31

REFERENCE STRING GENERATION

Setup → srs

In many known systems, Setup also outputs a simulation trapdoor

Example: for srs = (g, gα, gα2, …, gαq), τ = α

If a party knows τ, they can provide proofs of false statements

In a cryptocurrency setting (like Zcash), this would allow this party
to spend coins they don’t have

Setup → (srs, τ)

32

Setup → srs Setup → srs

GENERATING A REFERENCE STRING

→ srs

Setup → urs

TRUSTED SUBVERSION

TRANSPARENT MPC

UNREALISTIC

SUBVERSION [BFS16]

Subverting the reference string was considered by Bellare,
Fuchsbauer, and Scafuro in 2016

34

SUBVERSION [BFS16]

srs, τ

srs

Subversion soundness (S-SND): the prover can’t prove false
statements even if it generated the SRS

35

SUBVERSION [BFS16]

srs

srs

Subversion soundness (S-SND): the prover can’t prove false
statements even if it generated the SRS

Subversion zero knowledge (S-ZK): the verifier can’t tell if it’s
interacting with the prover or with a simulator, even if it generated
the SRS

OR ?

srs, τ

36

SUBVERSION [BFS16]

Subverting the reference string was first considered by Bellare,
Fuchsbauer, and Scafuro in 2016

They showed that:
• S-SND and (normal) ZK cannot be achieved (following [GO94])
• S-SND and S-WI can be achieved
• S-ZK and (normal) SND can be achieved

37

Setup → srs Setup → srs

GENERATING A REFERENCE STRING

→ srs

Setup → urs

TRUSTED SUBVERSION

TRANSPARENT MPC

UNREALISTIC IMPOSSIBLE :(

STARKS

SETUP VIA MULTI-PARTY COMPUTATION

Researchers have developed optimized MPC protocols for generating
structured reference strings for various SNARKs:

• Pinocchio [BGG17]
• Groth16 [BCG+15, BGM17, ABL+19, KMSV21]

These protocols have been run in practice in complex ceremonies
(for Zcash, Aztec, Filecoin, etc.)

If the SRS is not universal though, the ceremony needs to be re-run
every time the protocol changes

• Zcash Sprout ceremony in 2016 (6 participants)
• Zcash Sapling ceremony in 2018 (87 participants)

39

UPDATABILITY [GKMMM18, MBKM19]

α

(srs1, ρα) update proof: proof that
srs1 uses additional randomness α

(can be publicly verified)

universal SRS from which
circuit-specific SRSs can be derived

ε

40

UPDATABILITY [GKMMM18, MBKM19]

α

(srs1, ρα)

β

(srs2, ρβ)

γ

(srs3, ργ)

δ

(srs4, ρδ)

ζ

(srs5, ρζ)

No one know the trapdoor α⊕β⊕γ⊕δ⊕ζ of srs5 if at least one party
is honest

The set of parties is not fixed and the process doesn’t have an end:
a new party can come contribute randomness any time they want

ε

41

UPDATABILITY [GKMMM18, MBKM19]

srs0

ρα
HEADER

BODY

Verify(srs0, srs5, {ρi}) = 1?

ρβ
HEADER

BODY

ργ
HEADER

BODY

ρδ
HEADER

BODY

ρζ
HEADER

BODY

α

(srs1, ρα)

β

(srs2, ρβ)

γ

(srs3, ργ)

δ

(srs4, ρδ)

ζ

(srs5, ρζ)

42

PROTOCOLS AND PROOF SIZES

CD97 Groth09 BCC+16
Bulletproofs

Halo

BKLP15 BBC+18

SNARKs [GGPR13]
Sonic
Plonk
Marlin

DV SNARKs

ZKBoo Ligero Kilian92
STARKs
Aurora

GS08 Groth10

Linear Sublinear Polylog Constant

LMR19

DLOG

Pairings

Lattices

CRHFs

Libra

Thanks to Jonathan Bootle for the original version of this slide!

Spartan

Groth16

Fractal

BCS21 BISW17,18
GMNO18

BLNS20

AC20Hyrax

BCG+17 BCG20

PRIVATE AGGREGATE COMPUTATIONS

[x1]

[x5]

[x6]

[x2]

[x3][x4]

F(x1,…,x6)

some hiding representation of x5 44

PRIVATE AGGREGATE COMPUTATIONS

[x1]

[x5]

[x6]

[x2]

[x3][x4]

applications to:

- electronic voting

- federated learning [BIK+17]

- heavy hitters

- …and more!

F(x1,…,x6)

45

PRIVATE AGGREGATE COMPUTATIONS

[x1], π1

[x5], π5

[x6], π6

[x2], π2

[x3], π3[x4], π4

F(x1,…,x6)
a proof that x5 has the right form

Verify(srs, [xi], πi) ∀i

46

PRIVATE AGGREGATE COMPUTATIONS

[x1], π1

[x5], π5

[x6], π6

[x2], π2

[x3], π3[x4], π4

F(x1,…,x6)
Verify(srs, [xi], πi) ∀i

want proofs to
be small

π5

47

PRIVATE AGGREGATE COMPUTATIONS

[x1], π1

[x5], π5

[x6], π6

[x2], π2

[x3], π3[x4], π4

F(x1,…,x6)
Verify(srs, [xi], πi) ∀i

want proofs to
be small

want Verify to be fast

π5

48

PRIVATE AGGREGATE COMPUTATIONS

[x1], π1

[x5], π5

[x6], π6

[x2], π2

[x3], π3[x4], π4

F(x1,…,x6)
Verify(srs, [xi], πi) ∀i

49

PRIVATE AGGREGATE COMPUTATIONS

[x1], π1

[x5], π5

[x6], π6

[x2], π2

[x3], π3[x4], π4

F(x1,…,x6)
Verify(srs, [xi], πi) ∀i

prover runtime
is our biggest

constraint!

50

DISTRIBUTED ZERO KNOWLEDGE

F(x1,…,x6)
Verify(srs, [xi,j], πi,j) ∀i,j

[x5,2], π5,2

[x5,1], π5,1

Distributed zero-knowledge proofs [ACF02, C-GB17, BBC-G+19]
consider one prover and multiple verifiers who do not all collude

Can do this with constant communication between the two
verifiers and lower computation for both the prover and verifier

51

can think of this as a secret share
rather than an (expensive)

public-key ciphertext

DISTRIBUTED ZERO KNOWLEDGE

52

Used by Apple and Google in their exposure notification system

DISTRIBUTED ZERO KNOWLEDGE

53

?

Mozilla has experimented with Prio for telemetry data

ISRG offers running “the other server” as a service

CONCLUSIONS

more practical
proofs more

applications

It’s a fun and exciting time to be working on zero-knowledge proofs!

There is a ton of work in terms of:
• S{N,T}ARK-friendly hash functions, data structures, etc.
• Models for new applications that enable new constructions
• Improved techniques and optimizations
• Post-quantum friendliness

54

THANKS!
ANY QUESTIONS?

REFERENCES (IN ORDER OF APPEARANCE)

[GMR89]: Goldwasser, Micali, and Rackoff, The knowledge complexity of interactive proof systems
[BFM88]: Blum, Feldman, and Micali, Non-interactive zero-knowledge and its applications
[GO94]: Goldreich and Oren, Definitions and properties of zero-knowledge proof systems
[CD97]: Cramer and Damgård, Zero-knowledge proofs for finite field arithmetic; or: Can zero-knowledge be for free?
[GS08]: Groth and Sahai, Efficient non-interactive proof systems for bilinear groups
[Kilian92]: Kilian, A note on efficient zero-knowledge proofs and arguments
[Groth09]: Groth, Linear Algebra with Sub-linear Zero-Knowledge Arguments
[Groth10]: Groth, Short Pairing-Based Non-interactive Zero-Knowledge Arguments
[BCC+16]: Bootle et al., Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting
Halo: Bowe, Grigg, and Hopwood, Halo: Recursive Proof Composition without a Trusted Setup
Hyrax: Wahby et al., Doubly-efficient zkSNARKs without trusted setup
Bulletproofs: Bünz et al., Bulletproofs: Short Proofs for Confidential Transactions and More
[GGPR13]: Gennaro et al., Quadratic Span Programs and Succinct NIZKs without PCPs
[LMR19]: Lai, Malavolta, and Ronge, Succinct Arguments for Bilinear Group Arithmetic: Practical Structure-Preserving
Cryptography
Libra: Xie et al., Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation
[Groth16]: Groth, On the Size of Pairing-Based Non-interactive Arguments
[BISW17]: Boneh et al., Lattice-based SNARGs and their application to more efficient obfuscation
[BISW18]: Boneh et al., Quasi-optimal snargs via linear multi-prover interactive proofs
[GMNO18]: Gennaro et al., Lattice-Based zk-SNARKs from Square Span Programs
ZKBoo: Giacomelli, Madsen, and Orlandi, ZKBoo: Faster Zero-Knowledge for Boolean Circuits
Ligero: Ames et al., Ligero: Lightweight Sublinear Arguments Without a Trusted Setup
Aurora: Ben-Sasson et al., Aurora: Transparent Succinct Arguments for R1CS
Fractal: Chiesa, Ojha, and Spooner, Fractal: Post-Quantum and Transparent Recursive Proofs from Holography
[BCL20]: Bootle, Chiesa, and Liu, Zero-Knowledge IOPs with Linear-Time Prover and Polylogarithmic-Time Verifier
[BCG20]: Bootle, Chiesa, and Groth, Linear-Time Arguments with Sublinear Verification from Tensor Codes

https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Proof%20Systems/The_Knowledge_Complexity_Of_Interactive_Proof_Systems.pdf
https://dl.acm.org/doi/10.1145/62212.62222
https://www.wisdom.weizmann.ac.il/~oded/PSX/oren.pdf
https://www.brics.dk/RS/97/27/BRICS-RS-97-27.pdf
https://eprint.iacr.org/2007/155.pdf
https://people.csail.mit.edu/vinodv/6892-Fall2013/efficientargs.pdf
http://www0.cs.ucl.ac.uk/staff/J.Groth/MatrixZK.pdf
https://www.iacr.org/archive/asiacrypt2010/6477323/6477323.pdf
https://eprint.iacr.org/2016/263.pdf
https://eprint.iacr.org/2019/1021.pdf
https://eprint.iacr.org/2017/1132.pdf
https://eprint.iacr.org/2017/1066.pdf
https://eprint.iacr.org/2012/215.pdf
https://eprint.iacr.org/2019/969.pdf
https://eprint.iacr.org/2019/969.pdf
https://eprint.iacr.org/2019/317.pdf
https://eprint.iacr.org/2016/260.pdf
https://eprint.iacr.org/2017/240.pdf
https://eprint.iacr.org/2018/133.pdf
https://eprint.iacr.org/2018/275.pdf
https://eprint.iacr.org/2016/163.pdf
https://acmccs.github.io/papers/p2087-amesA.pdf
https://eprint.iacr.org/2018/828.pdf
https://eprint.iacr.org/2019/1076.pdf
https://eprint.iacr.org/2020/1527.pdf
https://eprint.iacr.org/2020/1426.pdf

[GKR+21]: Grassi et al., Poseidon: A New Hash Function for Zero-Knowledge Proof Systems
[BFS16]: Bellare, Fuchsbauer, and Scafuro, NIZKs with an Untrusted CRS: Security in the Face of Parameter Subversion
[BGG17]: Bowe et al., A multi-party protocol for constructing the public parameters of the Pinocchio zk-SNARK
[BCG+15]: Ben-Sasson et al., Secure Sampling of Public Parameters for Succinct Zero Knowledge Proofs
[BGM17]: Bowe et al., Scalable Multi-party Computation for zk-SNARK Parameters in the Random Beacon Model
[ABL+19]: Abdolmaleki et al., UC-secure CRS generation for SNARKs
[KMSV21]: Kohlweiss et al., Snarky Ceremonies
[GKMMM18]: Groth et al., Updatable and Universal Common Reference String with Applications to zk-SNARKs
Sonic / [MBKM19]: Maller et al., Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and Updatable Structured
Reference Strings
Marlin: Chiesa et al., Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS
Plonk: Gabizon, Williamson, and Ciobotaru, PLONK: Permutations over Lagrange-bases for Oecumenical Noninteractive
arguments of Knowledge
Spartan: Setty, Efficient and general-purpose zkSNARKs without trusted setup
[AC20]: Attema and Cramer, Compressed Σ-Protocol Theory and Practical Application to Plug & Play Secure
Algorithmics
[BBC+18]: Baum et al., Sub-Linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits
[BKLP15]: Benhamouda et al., Efficient zero-knowledge proofs for commitments from learning with errors over rings
[BCS21]: Bootle, Chiesa, and Sotiraki, Sumcheck Arguments and their Applications
[BLNS20]: Bootle et al., A non-PCP Approach to Succinct Quantum-Safe Zero-Knowledge
[BCG+17]: Ben-Sasson et al., Interactive Oracle Proofs with Constant Rate and Query Complexity
[BIK+17]: Bonawitz et al., Practical secure aggregation for privacy-preserving machine learning
[ACF02]: Abe et al., Non-interactive Distributed-Verifier Proofs and Proving Relations among Commitments
[C-GB17]: Corrigan-Gibbs and Boneh, Prio: private, robust, and scalable computation of aggregate statistics
[BBC-G+19]: Boneh et al., Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs

REFERENCES (IN ORDER OF APPEARANCE)

https://eprint.iacr.org/2019/458.pdf
https://eprint.iacr.org/2016/372.pdf
https://eprint.iacr.org/2017/602.pdf
https://www.ieee-security.org/TC/SP2015/papers-archived/6949a287.pdf
https://eprint.iacr.org/2017/1050.pdf
https://eprint.iacr.org/2021/219.pdf
https://eprint.iacr.org/2021/219.pdf
https://eprint.iacr.org/2018/280.pdf
https://eprint.iacr.org/2019/099.pdf
https://eprint.iacr.org/2019/099.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2019/550.pdf
https://eprint.iacr.org/2020/152.pdf
https://eprint.iacr.org/2020/152.pdf
https://eprint.iacr.org/2018/560.pdf
https://eprint.iacr.org/2014/889.pdf
https://eprint.iacr.org/2021/333.pdf
https://eprint.iacr.org/2020/737.pdf
https://eprint.iacr.org/2016/324.pdf
https://eprint.iacr.org/2017/281.pdf
https://iacr.org/archive/asiacrypt2002/25010207/25010207.pdf
https://people.csail.mit.edu/henrycg/files/academic/papers/nsdi17prio.pdf
https://eprint.iacr.org/2019/188.pdf

