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INTRODUCTION

This talk will cover the rapid evolution of zero-knowledge proofs 
according to their models and applications 

For an introduction to other aspects, check out: 
• https://zkproof.org/ 
• Jens Groth’s excellent invited talk at Crypto 2021
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INTRODUCTION TO ME 👋

I’m a professor at UCL and (recently) a researcher at Google 

I try to both construct privacy-enhancing technologies and 
empirically measure their success (e.g. I have done a lot of research 
on de-anonymizing cryptocurrencies) 

At Google I work on the Certificate Transparency team, looking at 
verifiable data structures (like Merkle trees)
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INTRODUCTION TO ZERO KNOWLEDGE

In a zero-knowledge proof [GMR89], a prover wants to convince a 
verifier that there exists a witness w corresponding to some 
instance x of a language LR (witness w for the statement (x,w)∈R) 

In a non-interactive zero-knowledge proof (NIZK) [BFM88], this is 
done without any interaction 

Soundness: hard for the prover to convince the verifier if x∉LR 

Zero knowledge: the verifier learns nothing except that x∈LR

Prove(x, w) → π Verify(x, π) → accept/reject

π
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SOUNDNESS: THE VERIFIER CAN SEE WALDO FOR THEMSELVES!



ZERO KNOWLEDGE: THE BOOK COULD BE ANYWHERE
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DEFINING ZERO KNOWLEDGE

crs, x, w 
Prove(crs, x, w) → π

crs, x 
Verify(crs, x, π) → accept/reject

π

crs

This common reference string needs to exist [GO94]; can be 
• random (trustless setup) or structured (trusted setup) 
• specific to a given relation or universal
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A ZERO-KNOWLEDGE SIMULATOR

crs, x, w 
Prove(crs, x, w) → π

crs, x 
Verify(crs, x, π) → accept/reject

π

crs

Sim(crs,     x) → πτs,

OR ?

Zero knowledge: the verifier can’t tell if it’s interacting with the 
prover or with a simulator (who doesn’t know a witness) 

• Perfect zero knowledge if the distributions are identical (not 
just indistinguishable)
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EXTRACTABILITY

crs, x, w 
Prove(crs, x, w) → π

crs, x 
Verify(crs, x, π) → accept/reject

π

crs

Ext(crs,     x, π) → w s.t. (x,w)∈Rτe,

Extractability: there exists a PT extractor that can do this… 
• …for all provers (proof of knowledge) 
• …for all PPT provers (argument of knowledge)
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PROTOCOLS AND PROOF SIZES

CD97

Kilian92

GS08

Linear Sublinear Polylog

DLOG

Pairings

CRHFs

Groth09

Groth10

SUCCINCT  
NON-INTERACTIVE 

ARGUMENTS (SNARGS) 
OF KNOWLEDGE 

(SNARKS)



BLOCKCHAIN BASICS
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A blockchain is an ordered collection of transactions

All transactions in the chain are replayed by all peers (full nodes) 
in a network to ensure they agree on its current state



MAINTAINING STATE
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tx = {ifrom, ito, amt, sig} is valid if 
• the sender has enough money (Bal[ifrom] ≥ amt) 
• the sender’s signature verifies (Verify(Addr[ifrom], sig, tx) = 1) 

Can process tx(Bal): Bal[ifrom] -= amt and Bal[ito] += amt

h0 h1 h2 h3

h01

haddr

pk0

h23

pk1 pk2 pk3

AD
DR

ES
S 

TR
EE

h0 h1 h2 h3

h01

hbal

bal0

h23

bal1 bal2 bal3

BALANCE TREE



CHECKING TRANSACTION VALIDITY
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h0 h1 h2 h3

h01

haddr

pk0

h23

pk1 pk2 pk3

h0 h1 h2 h3

h01

hbal

h23

10 10 1010

tx = {0, 2, 2, sig} 
• the sender has enough money (Bal[0] ≥ 2) 
• the sender’s signature verifies (Verify(Addr[0], sig, tx) = 1)



PROCESSING TRANSACTIONS
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h0 h1 h2 h3

h01

haddr

pk0

h23

pk1 pk2 pk3

h0 h1 h2 h3

h01

hbal

8

h23

10 12 10

tx = {iP, iS, 2, sig} 
• Bal[ifrom] -= amt and Bal[ito] += amt



PROCESSING TRANSACTIONS

21

h0 h1 h2 h3

h01

haddr

pk0

h23

pk1 pk2 pk3

h0 h1 h2 h3

h01

hbal

8

h23

10 12 10

tx = {iP, iS, 2, sig} 
• Bal[ifrom] -= amt and Bal[ito] += amt 
• Bal changes, so its root changes from hbal to hbal



MAINTAINING STATE

h0 h1 h2 h3

h01

haddr

pk0

h23

pk1 pk2 pk3

h0 h1 h2 h3

h01

hbal

10

h23

bal1 bal2 bal3

x = (haddr, hbal), w = (Bal, T) ∈ Rvalid ⇔ (1) hbal = root(Bal) (correct root) 
and (2) all txs in T are valid (according to haddr) (valid transactions) 

x = (haddr, hbal, hbal), w = (Bal, Bal, T) ∈ Rupdate ⇔ (1) hbal = root(Bal) and 
hbal = root(Bal) (correct roots) and (2) Bal = txn(txn-1(….(tx0(Bal)…)) 
(correct state update)

bal0



UPDATING GLOBAL STATE

TXN

TX2

TX2

TX1

TX1

. . .

TX1

TX2

TXN

. . .

HBAL

HADDR

TXN. . . 

ADDR, BAL

(haddr, hbal), (Bal, T) ∈ Rvalid?  
Bal = txn(txn-1(….(tx0(Bal)…))

BAL



ZK-ROLLUPS

TX2TX1

BAL

HBAL

HADDR

Π

TXN. . . 

ADDR, BAL

Verify(srs, (haddr, hbal, hbal), π) = 1?

BAL proof for Rvalid 
and Rupdate

light clients (who don’t  
maintain the full state)  

can also perform this check



ZK-ROLLUPS

TX2TX1

BAL

HBAL

HADDR

Π

TXN. . . 

ADDR, BAL

Verify(srs, (haddr, hbal, hbal), π) = 1?

BAL proof for Rvalid 
and Rupdate

light clients (who don’t  
maintain the full state)  

can also perform this checkWE DON’T EVEN CARE ABOUT ZERO KNOWLEDGE!  
JUST WANT PROOF TO BE AS SMALL AS POSSIBLE



PROTOCOLS AND PROOF SIZES

CD97

Kilian92

GS08

Linear Sublinear Polylog
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Pairings
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Groth09
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Constant

Lattices
STATE OF THE ART (GROTH’16) 
HAS 3 GROUP ELEMENTS AND 

REQUIRES 3 PAIRINGS TO VERIFY

BCC+16
Bulletproofs

Halo

SNARKs [GGPR13]

DV SNARKs

ZKBoo Ligero
STARKs
Aurora

Groth16

Fractal

BISW17,18
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LMR19
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SNARKS + BLOCKCHAINS

Having small proofs that can be verified quickly is really useful for 
agreeing on a shared state in a scalable way 

But, these proofs have their costs 
• Substantial prover runtime [BCL20, BCG20, GKR+21] 
• Known constant-sized SNARKs require a structured reference 

string (SRS), which means relying on trusted third parties
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PROVER RUNTIME

The number of constraints for a proof system involving hashes 
depends hugely on the hash function

PROVING KNOWLEDGE OF X SUCH THAT H(X) = Y

SHA256

PEDERSEN

POSEIDON [GKR+21]
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SNARKS + BLOCKCHAINS

Having small proofs that can be verified quickly is really useful for 
agreeing on a shared state in a scalable way 

But, these proofs have their costs 
• Substantial prover runtime [BCL20, BCG20, GKR+21] 
• Known constant-sized SNARKs require a structured reference 

string (SRS), which means relying on trusted third parties
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GENERATING A REFERENCE STRING

Setup → srs

→ srs

Setup → srs

Setup → urs

TRUSTED SUBVERSION

TRANSPARENT MPC



REFERENCE STRING GENERATION

Setup → srs

In many known systems, Setup also outputs a simulation trapdoor

Setup → (srs, τ)
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REFERENCE STRING GENERATION

Setup → srs

In many known systems, Setup also outputs a simulation trapdoor 

Example: for srs = (g, gα, gα2, …, gαq), τ = α 

If a party knows τ, they can provide proofs of false statements 

In a cryptocurrency setting (like Zcash), this would allow this party 
to spend coins they don’t have

Setup → (srs, τ)
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Setup → srs Setup → srs

GENERATING A REFERENCE STRING

→ srs

Setup → urs

TRUSTED SUBVERSION

TRANSPARENT MPC

UNREALISTIC



SUBVERSION [BFS16]

Subverting the reference string was considered by Bellare, 
Fuchsbauer, and Scafuro in 2016
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SUBVERSION [BFS16]

srs, τ 
  

srs

Subversion soundness (S-SND): the prover can’t prove false  
statements even if it generated the SRS 
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SUBVERSION [BFS16]

srs 
  

srs

Subversion soundness (S-SND): the prover can’t prove false  
statements even if it generated the SRS 

Subversion zero knowledge (S-ZK): the verifier can’t tell if it’s 
interacting with the prover or with a simulator, even if it generated  
the SRS

OR ?

srs, τ 
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SUBVERSION [BFS16]

Subverting the reference string was first considered by Bellare, 
Fuchsbauer, and Scafuro in 2016 

They showed that: 
• S-SND and (normal) ZK cannot be achieved (following [GO94]) 
• S-SND and S-WI can be achieved 
• S-ZK and (normal) SND can be achieved 
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Setup → srs Setup → srs

GENERATING A REFERENCE STRING

→ srs

Setup → urs

TRUSTED SUBVERSION

TRANSPARENT MPC

UNREALISTIC IMPOSSIBLE :(

STARKS



SETUP VIA MULTI-PARTY COMPUTATION

Researchers have developed optimized MPC protocols for generating 
structured reference strings for various SNARKs: 

• Pinocchio [BGG17] 
• Groth16 [BCG+15, BGM17, ABL+19, KMSV21] 

These protocols have been run in practice in complex ceremonies 
(for Zcash, Aztec, Filecoin, etc.) 

If the SRS is not universal though, the ceremony needs to be re-run 
every time the protocol changes 

• Zcash Sprout ceremony in 2016 (6 participants) 
• Zcash Sapling ceremony in 2018 (87 participants)
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UPDATABILITY [GKMMM18,  MBKM19]

α

(srs1, ρα) update proof: proof that 
srs1 uses additional randomness α 

(can be publicly verified)

universal SRS from which 
circuit-specific SRSs can be derived

ε
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UPDATABILITY [GKMMM18,  MBKM19]

α

(srs1, ρα)

β

(srs2, ρβ)

γ

(srs3, ργ)

δ

(srs4, ρδ)

ζ

(srs5, ρζ)

No one know the trapdoor α⊕β⊕γ⊕δ⊕ζ of srs5 if at least one party 
is honest 

The set of parties is not fixed and the process doesn’t have an end: 
a new party can come contribute randomness any time they want

ε
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UPDATABILITY [GKMMM18,  MBKM19]

srs0

ρα
HEADER

BODY

Verify(srs0, srs5, {ρi}) = 1?

ρβ
HEADER

BODY

ργ
HEADER

BODY

ρδ
HEADER

BODY

ρζ
HEADER

BODY

α

(srs1, ρα)

β

(srs2, ρβ)

γ

(srs3, ργ)

δ

(srs4, ρδ)

ζ

(srs5, ρζ)
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PROTOCOLS AND PROOF SIZES

CD97 Groth09 BCC+16
Bulletproofs

Halo

BKLP15 BBC+18

SNARKs [GGPR13]
Sonic
Plonk
Marlin

DV SNARKs

ZKBoo Ligero Kilian92
STARKs
Aurora

GS08 Groth10

Linear Sublinear Polylog Constant

LMR19

DLOG

Pairings

Lattices

CRHFs

Libra

Thanks to Jonathan Bootle for the original version of this slide!

Spartan

Groth16

Fractal

BCS21 BISW17,18
GMNO18

BLNS20

AC20Hyrax

BCG+17 BCG20



PRIVATE AGGREGATE COMPUTATIONS

[x1]

[x5]

[x6]

[x2]

[x3][x4]

F(x1,…,x6)

some hiding representation of x5 44



PRIVATE AGGREGATE COMPUTATIONS

[x1]

[x5]

[x6]

[x2]

[x3][x4]

applications to: 

- electronic voting 

- federated learning [BIK+17] 

- heavy hitters 

- …and more!

F(x1,…,x6)
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PRIVATE AGGREGATE COMPUTATIONS

[x1], π1

[x5], π5

[x6], π6

[x2], π2

[x3], π3[x4], π4

F(x1,…,x6)
a proof that x5 has the right form

Verify(srs, [xi], πi) ∀i
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PRIVATE AGGREGATE COMPUTATIONS

[x1], π1

[x5], π5

[x6], π6

[x2], π2

[x3], π3[x4], π4

F(x1,…,x6)
Verify(srs, [xi], πi) ∀i

want proofs to 
be small

π5
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PRIVATE AGGREGATE COMPUTATIONS

[x1], π1

[x5], π5

[x6], π6

[x2], π2

[x3], π3[x4], π4

F(x1,…,x6)
Verify(srs, [xi], πi) ∀i

want proofs to 
be small

want Verify to be fast

π5
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PRIVATE AGGREGATE COMPUTATIONS

[x1], π1

[x5], π5

[x6], π6

[x2], π2

[x3], π3[x4], π4

F(x1,…,x6)
Verify(srs, [xi], πi) ∀i
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PRIVATE AGGREGATE COMPUTATIONS

[x1], π1

[x5], π5

[x6], π6

[x2], π2

[x3], π3[x4], π4

F(x1,…,x6)
Verify(srs, [xi], πi) ∀i

prover runtime 
is our biggest 

constraint!
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DISTRIBUTED ZERO KNOWLEDGE

F(x1,…,x6)
Verify(srs, [xi,j], πi,j) ∀i,j

[x5,2], π5,2

[x5,1], π5,1

Distributed zero-knowledge proofs [ACF02, C-GB17, BBC-G+19] 
consider one prover and multiple verifiers who do not all collude 

Can do this with constant communication between the two 
verifiers and lower computation for both the prover and verifier

51

can think of this as a secret share 
rather than an (expensive)  

public-key ciphertext



DISTRIBUTED ZERO KNOWLEDGE
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Used by Apple and Google in their exposure notification system



DISTRIBUTED ZERO KNOWLEDGE
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?

Mozilla has experimented with Prio for telemetry data 

ISRG offers running “the other server” as a service



CONCLUSIONS

more practical  
proofs more  

applications

It’s a fun and exciting time to be working on zero-knowledge proofs!

There is a ton of work in terms of: 
• S{N,T}ARK-friendly hash functions, data structures, etc. 
• Models for new applications that enable new constructions 
• Improved techniques and optimizations 
• Post-quantum friendliness
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THANKS!  
ANY QUESTIONS?
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