
Coconut: Threshold Issuance Selective Disclosure
Credentials with Applications to Distributed Ledgers

Alberto Sonnino∗†, Mustafa Al-Bassam∗†, Shehar Bano∗†, Sarah Meiklejohn∗ and George Danezis∗†
∗ University College London, United Kingdom

† chainspace.io

Abstract—Coconut is a novel selective disclosure credential
scheme supporting distributed threshold issuance, public and
private attributes, re-randomization, and multiple unlinkable se-
lective attribute revelations. Coconut integrates with blockchains
to ensure confidentiality, authenticity and availability even when
a subset of credential issuing authorities are malicious or offline.
We implement and evaluate a generic Coconut smart contract
library for Chainspace and Ethereum; and present three ap-
plications related to anonymous payments, electronic petitions,
and distribution of proxies for censorship resistance. Coconut
uses short and computationally efficient credentials, and our
evaluation shows that most Coconut cryptographic primitives
take just a few milliseconds on average, with verification taking
the longest time (10 milliseconds).

I. INTRODUCTION

Selective disclosure credentials [16], [19] allow the is-
suance of a credential to a user, and the subsequent unlinkable
revelation (or ‘showing’) of some of the attributes it encodes
to a verifier for the purposes of authentication, authoriza-
tion or to implement electronic cash. However, established
schemes have shortcomings. Some entrust a single issuer with
the credential signature key, allowing a malicious issuer to
forge any credential or electronic coin. Other schemes do not
provide the necessary efficiency, re-randomization, or blind
issuance properties necessary to implement practical selective
disclosure credentials. No existing scheme provides all of
efficiency, threshold distributed issuance, private attributes, re-
randomization, and unlinkable multi-show selective disclosure.

The lack of efficient general purpose selective disclosure
credentials impacts platforms that support ‘smart contracts’,
such as Ethereum [53], Hyperledger [15] and Chainspace [1].
They all share the limitation that verifiable smart contracts
may only perform operations recorded on a public blockchain.
Moreover, the security models of these systems generally
assume that integrity should hold in the presence of a threshold
number of dishonest or faulty nodes (Byzantine fault tol-
erance); it is desirable for similar assumptions to hold for
multiple credential issuers (threshold issuance).

Issuing credentials through smart contracts would be very
desirable: a smart contract could conditionally issue user
credentials depending on the state of the blockchain, or attest

some claim about a user operating through the contract—
such as their identity, attributes, or even the balance of their
wallet. This is not possible, as current selective credential
schemes would either entrust a single party as an issuer, or
would not provide appropriate efficiency, re-randomization,
blind issuance and selective disclosure capabilities (as in the
case of threshold signatures [3]). For example, the Hyperledger
system supports CL credentials [16] through a trusted third
party issuer, illustrating their usefulness, but also their fragility
against the issuer becoming malicious. Garman et al. [26]
present a decentralized anonymous credentials system inte-
grated into distributed ledgers; they provide the ability to issue
publicly verifiable claims without central issuers, but do not
focus on threshold issuance or on general purpose credentials,
and showing credentials requires expensive double discrete-
logarithm proofs.

Coconut addresses these challenges, and allows a subset of
decentralized mutually distrusting authorities to jointly issue
credentials, on public or private attributes. Those credentials
cannot be forged by users, or any small subset of potentially
corrupt authorities. Credentials can be re-randomized before
selected attributes are shown to a verifier, protecting privacy
even in the case in which all authorities and verifiers collude.
The Coconut scheme is based on a threshold issuance signature
scheme that allows partial claims to be aggregated into a
single credential. Mapped to the context of permissioned and
semi-permissioned blockchains, Coconut allows collections of
authorities in charge of maintaining a blockchain, or a side
chain [3] based on a federated peg, to jointly issue selective
disclosure credentials.

Coconut uses short and computationally efficient creden-
tials, and efficient revelation of selected attributes and verifi-
cation protocols. Each partial credential and the consolidated
credential is composed of exactly two group elements. The size
of the credential remains constant regardless of the number
of attributes or authorities/issuers. Furthermore, after a one-
time setup phase where the users collect and aggregate a
threshold number of verification keys from the authorities,
the attribute showing and verification are O(1) in terms of
both cryptographic computations and communication of cryp-
tographic material—irrespective of the number of authorities.
Our evaluation of the Coconut primitives shows very promising
results. Verification takes about 10ms, while signing a private
attribute is about 3 times faster. The latency is about 600
ms when the client aggregates partial credentials from 10
authorities distributed across the world.

Contribution. This paper makes three key contributions:

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23272
www.ndss-symposium.org

request

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

issue

aggregate &
randomize

authorities

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

show

Fig. 1: A high-level overview of Coconut architecture.

• We describe the signature schemes underlying Coconut,
including how key generation, distributed issuance, aggre-
gation and verification of signatures operate (Sections II
and III). The scheme is an extension and hybrid of the
Waters signature scheme [52], the BGLS signature [9],
and the signature scheme of Pointcheval and Sanders [43].
This is the first general purpose, fully distributed threshold
issuance, re-randomizable, multi-show credential scheme
of which we are aware.

• We use Coconut to implement a generic smart contract
library for Chainspace [1] and one for Ethereum [53],
performing public and private attribute issuance, aggrega-
tion, randomization and selective disclosure (Section IV).
We evaluate their performance and cost within those
platforms (Section VI).

• We design three applications using the Coconut contract
library: a coin tumbler providing payment anonymity;
a privacy preserving electronic petitions; and a proxy
distribution system for a censorship resistance system
(Section V). We implement and evaluate the first two
applications on the Chainspace platform, and provide a
security and performance evaluation (Section VI).

II. OVERVIEW OF COCONUT

Coconut is a selective disclosure credential system, sup-
porting threshold credential issuance of public and private
attributes, re-randomization of credentials to support multiple
unlinkable revelations, and the ability to selectively disclose a
subset of attributes. It is embedded into a smart contract library
that can be called from other contracts to issue credentials.

The Coconut architecture is illustrated in Figure 1. Any
Coconut user may send a Coconut request command to a set
of Coconut signing authorities; this command specifies a set
of public or encrypted private attributes to be certified into
the credential (Ê). Then, each authority answers with an issue
command delivering a partial credential (Ë). Any user can
collect a threshold number of shares, aggregate them to form
a single consolidated credential, and re-randomize it (Ì). The
use of the credential for authentication is however restricted
to a user who knows the private attributes embedded in the
credential—such as a private key. The user who owns the
credentials can then execute the show protocol to selectively
disclose attributes or statements about them (Í). The showing
protocol is publicly verifiable, and may be publicly recorded.
Coconut has the following design goals:

• Threshold authorities: Only a subset of the authorities is
required to issue partial credentials in order to allow the

users to generate a consolidated credential [8]. The com-
munication complexity of the request and issue protocol is
thus O(t), where t is the size of the subset of authorities.
Furthermore, it is impossible to generate a consolidated
credential from fewer than t partial credentials.

• Blind issuance & Unlinkability: The authorities issue
the credential without learning any additional information
about the private attributes embedded in the credential.
Furthermore, it is impossible to link multiple showings of
the credentials with each other, or the issuing transcript,
even if all the authorities collude (see Section III-B).

• Non-interactivity: The authorities may operate indepen-
dently of each other, following a simple key distribution
and setup phase to agree on public security and crypto-
graphic parameters—they do not need to synchronize or
further coordinate their activities.

• Liveness: Coconut guarantees liveness as long as a
threshold number of authorities remains honest and weak
synchrony assumptions holds for the key distribution [33].

• Efficiency: The credentials and all zero-knowledge proofs
involved in the protocols are short and computationally
efficient. After aggregation and re-randomization, the
attribute showing and verification involve only a single
consolidated credential, and are therefore O(1) in terms
of both cryptographic computations and communication
of cryptographic material—no matter the number of au-
thorities.

• Short credentials: Each partial credential—as well as
the consolidated credential—is composed of exactly two
group elements, no matter the number of authorities or
the number of attributes embedded in the credentials.

As a result, a large number of authorities may be used to
issue credentials, without significantly affecting efficiency.

III. THE COCONUT CONSTRUCTION

We introduce the cryptographic primitives supporting
the Coconut architecture, step by step from the design of
Pointcheval and Sanders [43] and Boneh et al. [10], [9] to
the full Coconut scheme.

• Step 1: We first recall (Section III-C) the scheme of
Pointcheval et al. [43] for single-attribute credentials. We
present its limitations preventing it from meeting our
design goals presented in Section II, and we show how to
incorporate principles from Boneh et al. [10] to overcome
them.

• Step 2: We introduce (Section III-D) the Coconut thresh-
old credentials scheme, which has all the properties of
Pointcheval and Sanders [43] and Boneh et al. [10], and
allows us to achieve all our design goals.

• Step 3: Finally, we extend (Section III-E) our schemes
to support credentials embedding q distinct attributes
(m1, . . . ,mq) simultaneously.

A. Notations and Assumptions

We present the notation used in the rest of the paper, as
well as the security assumptions on which our primitives rely.

2

a) Zero-knowledge proofs: Our credential scheme uses
non-interactive zero-knowledge proofs to assert knowledge
and relations over discrete logarithm values. We represent
these non-interactive zero-knowledge proofs with the notation
introduced by Camenisch et al. [17]:

NIZK{(x, y, . . .) : statements about x, y, . . . }

which denotes proving in zero-knowledge that the secret values
(x, y, . . .) (all other values are public) satisfy the statements
after the colon.

b) Cryptographic assumptions: Coconut requires
groups (G1,G2,GT) of prime order p with a bilinear map
e : G1 × G2 → GT and satisfying the following properties:
(i) Bilinearity means that for all g1 ∈ G1, g2 ∈ G2 and
(a, b) ∈ F2

p, e(ga1 , g
b
2) = e(g1, g2)ab; (ii) Non-degeneracy

means that for all g1 ∈ G1, g2 ∈ G2, e(g1, g2) 6= 1;
(iii) Efficiency implies the map e is efficiently computable;
(iv) furthermore, G1 6= G2, and there is no efficient
homomorphism between G1 and G2. The type-3 pairings
are efficient [25]. They support the XDH assumption which
implies the difficulty of the Computational co-Diffie-Hellman
(co-CDH) problem in G1 and G2, and the difficulty of the
Decisional Diffie-Hellman (DDH) problem in G1 [10].

Coconut also relies on a cryptographically secure hash
function H , hashing an element G1 into an other element
of G1, namely H : G1 → G1. We implement this function
by serializing the (x, y) coordinates of the input point and
applying a full-domain hash function to hash this string into
an element of G1 (as Boneh et al. [10]).

c) Threshold and communication assumptions: Co-
conut assumes honest majority (n/2 < t) to prevent mali-
cious authorities from issuing credentials arbitrarily. Coconut
authorities do not need to communicate with each other;
users wait for t-out-of-n replies (in any order of arrival) and
aggregate them into a consolidated credential; thus Coconut
implicitly assumes an asynchronous setting. However, our
current implementations rely on the distributed key generation
protocol of Kate et al. [33], which requires (i) weak synchrony
for liveness (but not for safety), and (ii) at most one third of
dishonest authorities.

B. Scheme Definitions and Security Properties

We present the protocols that comprise a threshold creden-
tials scheme:

v Setup(1λ) → (params): defines the system parameters
params with respect to the security parameter λ. These
parameters are publicly available.

v KeyGen(params) → (sk, vk): is run by the authorities
to generate their secret key sk and verification key vk from
the public params.

v AggKey(vk1, . . . , vkt) → (vk): is run by whoever wants
to verify a credential to aggregate any subset of t verification
keys vki into a single consolidated verification key vk.
AggKey needs to be run only once.

v IssueCred(m,φ) → (σ): is an interactive protocol be-
tween a user and each authority, by which the user obtains

a credential σ embedding the private attribute m satisfying
the statement φ.

v AggCred(σ1, . . . , σt) → (σ): is run by the user to ag-
gregate any subset of t partial credentials σi into a single
consolidated credential.

v ProveCred(vk,m, φ′) → (Θ, φ′): is run by the user to
compute a proof Θ of possession of a credential certifying
that the private attribute m satisfies the statement φ′ (under
the corresponding verification key vk).

v VerifyCred(vk,Θ, φ′) → (true/false): is run by who-
ever wants to verify a credential embedding a private at-
tribute satisfying the statement φ′, using the verification key
vk and cryptographic material Θ generated by ProveCred.

A threshold credential scheme must satisfy the following
security properties:

Unforgeability: It must be unfeasible for an adversarial user
to convince an honest verifier that they are in possession
of a credential if they are in fact not (i.e., if they have not
received valid partial credentials from at least t authorities).

Blindness: It must be unfeasible for an adversarial authority
to learn any information about the attribute m during the
execution of the IssueCred protocol, except for the fact
that m satisfies φ.

Unlinkability / Zero-knowledge: It must be unfeasible for
an adversarial verifier (potentially working with an adversar-
ial authority) to learn anything about the attribute m, except
that it satisfies φ′, or to link the execution of ProveCred
with either another execution of ProveCred or with the
execution of IssueCred (for a given attribute m).

C. Foundations of Coconut

Before giving the full Coconut construction, we first
recall the credentials scheme proposed by Pointcheval and
Sanders [43]; their construction has the same properties as
CL-signatures [16] but is more efficient. The scheme works in
a bilinear group (G1,G2,GT) of type 3, with a bilinear map
e : G1 ×G2 → GT as described in Section III-A.

v P.Setup(1λ) → (params): Choose a bilinear group
(G1,G2,GT) with order p, where p is a λ-bit prime number.
Let g1 be a generator of G1, and g2 a generator of G2. The
system parameters are params = (G1,G2,GT , p, g1, g2).

v P.KeyGen(params) → (sk, vk): Choose a random se-
cret key sk = (x, y) ∈ F2

p. Parse params =
(G1,G2,GT , p, g1, g2), and publish the verification key
vk = (g2, α, β) = (g2, g

x
2 , g

y
2).

v P.Sign(params, sk,m) → (σ): Parse sk = (x, y). Pick
a random r ∈ Fp and set h = gr1 . Output σ = (h, s) =
(h, hx+y·m).

v P.Verify(params, vk,m, σ) → (true/false): Parse
vk = (g2, α, β) and σ = (h, s). Output true if h 6= 1 and
e(h, αβm) = e(s, g2); otherwise output false.

The signature σ = (h, s) is randomizable by choosing a
random r′ ∈ Fp and computing σ′ = (hr

′
, sr

′
). The above

scheme can be modified to obtain credentials on a private
attribute: to run IssueCred the user first picks a random

3

t ∈ Fp, computes the commitment cp = gt1Y
m to the message

m, where Y = gy1 ; and sends it to a single authority along with
a zero-knowledge proof of the opening of the commitment.
The authority verifies the proof, picks a random u ∈ Fp, and
returns σ̃ = (h, s̃) = (gu, (Xcp)

u) where X = gx1 . The user
unblinds the signature by computing σ = (h, s̃(h)−t), and this
value acts as the credential.

This scheme provides blindness, unlinkability, efficiency
and short credentials; but it does not support threshold issuance
and therefore does not achieve our design goals. This limitation
comes from the P.Sign algorithm—the issuing authority com-
putes the credentials using a private and self-generated random
number r which prevents the scheme from being efficiently
distributed to a multi-authority setting1. To overcome that
limitation, we take advantage of a concept introduced by BLS
signatures [10]; exploiting a hash function H : Fp → G1

to compute the group element h = H(m). The next section
describes how Coconut incorporates these concepts to achieve
all our design goals.

D. The Coconut Threshold Credential Scheme

We introduce the Coconut threshold credential scheme,
allowing users to obtain a partial credential σi on a private
or public attribute m. In a system with n authorities, a t-out-
of-n threshold credentials scheme offers great flexibility as
the users need to collect only n/2 < t ≤ n of these partial
credentials in order to recompute the consolidated credential
(both t and n are scheme parameters).

a) Cryptographic primitives: For the sake of simplicity,
we describe below a key generation algorithm TTPKeyGen
as executed by a trusted third party; this protocol can however
be executed in a distributed way as illustrated by Gennaro et
al. [27] under a synchrony assumption, and as illustrated by
Kate et al. [33] under a weak synchrony assumption. Adding
and removing authorities implies a re-run of the key generation
algorithm—this limitation is inherited from the underlying
Shamir’s secret sharing protocol [48] and can be mitigated
using techniques introduced by Herzberg et al. [29].

v Setup(1λ) → (params): Choose a bilinear group
(G1,G2,GT) with order p, where p is a λ-bit
prime number. Let g1, h1 be generators of G1, and
g2 a generator of G2. The system parameters are
params = (G1,G2,GT , p, g1, g2, h1).

v TTPKeyGen(params, t, n) → (sk, vk): Pick2 two poly-
nomials v, w of degree t−1 with coefficients in Fp, and set
(x, y) = (v(0), w(0)). Issue to each authority i ∈ [1, . . . , n]
a secret key ski = (xi, yi) = (v(i), w(i)), and publish their
verification key vki = (g2, αi, βi) = (g2, g

xi
2 , g

yi
2).

v IssueCred(m,φ) → (σ): Credentials issuance is com-
posed of three algorithms:
v PrepareBlindSign(m,φ) → (d,Λ, φ): The users gen-

erate an El-Gamal key-pair (d, γ = gd1); pick a random

1The original paper of Pointcheval and Sanders [43] proposes a sequen-
tial aggregate signature protocol that is unsuitable for threshold credentials
issuance (see Section VII).

2This algorithm can be turned into the KeyGen and AggKey algorithms
described in Section III-B using techniques illustrated by Gennaro et al. [27]
or Kate et al. [33].

o ∈ Fp, compute the commitment cm and the group
element h ∈ G1 as follows:

cm = gm1 h
o
1 and h = H(cm)

Pick a random k ∈ Fp and compute an El-Gamal
encryption of m as below:

c = Enc(hm) = (gk1 , γ
khm)

Output (d,Λ = (γ, cm, c, πs), φ), where φ is an
application-specific predicate satisfied by m, and πs is
defined by:

πs = NIZK{(d,m, o, k) : γ = gd1 ∧ cm = gm1 h
o
1

∧ c = (gk1 , γ
khm) ∧ φ(m) = 1}

v BlindSign(ski,Λ, φ) → (σ̃i): The authority i parses Λ =
(γ, cm, c, πs), ski = (xi, yi), and c = (a, b). Recompute
h = H(cm). Verify the proof πs using γ, cm and φ;
if the proof is valid, build c̃i = (ay, hxibyi) and output
σ̃i = (h, c̃i); otherwise output ⊥ and stop the protocol.

v Unblind(σ̃i, d) → (σi): The users parse σ̃i = (h, c̃) and
c̃ = (ã, b̃); compute σi = (h, b̃(ã)−d). Output σi.

v AggCred(σ1, . . . , σt) → (σ): Parse each σi as (h, si) for
i ∈ [1, . . . , t]. Output (h,

∏t
i=1 s

li
i), where l is the Lagrange

coefficient:

li =

t∏

j=1,j 6=i

(0− j)

t∏

j=1,j 6=i

(i− j)

−1

mod p

v ProveCred(vk,m, σ, φ′) → (Θ, φ′): Parse σ = (h, s)
and vk = (g2, α, β). Pick at random r′, r ∈ F2

p; set
σ′ = (h′, s′) = (hr

′
, sr

′
); build κ = αβmgr2 and ν = (h′)

r.
Output (Θ = (κ, ν, σ′, πv), φ

′), where φ′ is an application-
specific predicate satisfied by m, and πv is:

πv = NIZK{(m, r) : κ = αβmgr2 ∧ ν = (h′)
r ∧ φ′(m) = 1}

v VerifyCred(vk,Θ, φ′) → (true/false): Parse
Θ = (κ, ν, σ′, πv) and σ′ = (h′, s′); verify πv using
vk and φ′. Output true if the proof verifies, h′ 6= 1 and
e(h′, κ) = e(s′ν, g2); otherwise output false.

b) Correctness and explanation: The Setup algorithm
generates the public parameters. Credentials are elements of
G1, while verification keys are elements of G2. Figure 2
illustrates the protocol exchanges.

To keep an attribute m ∈ Fp hidden from the author-
ities, the users run PrepareBlindSign to produce Λ =
(γ, cm, c, πs). They create an El-Gamal keypair (d, γ = gd1),
pick a random o ∈ Fp, and compute a commitment cm =
gm1 h

o
1. Then, the users compute h = H(cm) and the encryption

of hm as below:

c = Enc(hm) = (a, b) = (gk1 , γ
khm),

where k ∈ Fp. Finally, the users send (Λ, φ) to the signer,
where πs is a zero-knowledge proof ensuring that m sat-
isfies the application-specific predicate φ, and correctness
of γ, cm, c (Ê). All the zero-knowledge proofs required by
Coconut are based on standard sigma protocols to show
knowledge of representation of discrete logarithms; they are

4

based on the DH assumption [17] and do not require any
trusted setup.

To blindly sign the attribute, each authority i verifies the
proof πs, and uses the homomorphic properties of El-Gamal
to generate an encryption c̃ of hxi+yi·m as below:

c̃ = (ay, hxibyi) = (gkyi1 , γkyihxi+yi·m)

Note that every authority must operate on the same element
h. Intuitively, generating h from h = H(cm) is equivalent to
computing h = gr̃1 where r̃ ∈ Fp is unknown by the users
(as in Pointcheval and Sanders [43]). However, since h is
deterministic, every authority can uniquely derive it in isolation
and forgeries are prevented since different m0 and m1 cannot
lead to the same value of h.3 As described in Section III-C,
the blind signature scheme of Pointcheval and Sanders builds
the credentials directly from a commitment of the attribute
and a blinding factor secretly chosen by the authority; this is
unsuitable for issuance of threshold credentials. We circumvent
that problem by introducing the El-Gamal ciphertext c in our
scheme and exploiting its homomorphism, as described above.

Upon reception of c̃, the users decrypt it using their El-
Gamal private key d to recover the partial credentials σi =
(h, hxi+yi·m); this is performed by the Unblind algorithm (Ë).
Then, the users can call the AggCred algorithm to aggregate
any subset of t partial credentials. This algorithm uses the
Lagrange basis polynomial l which allows to reconstruct the
original v(0) and w(0) through polynomial interpolation;

v(0) =

t∑

i=1

v(i)li and w(0) =

t∑

i=1

w(i)li

However, this computation happens in the exponent—neither
the authorities nor the users should know the values v(0) and
w(0). One can easily verify the correctness of AggCred of t
partial credentials σi = (hi, si) as below.

s =

t∏

i=1

(si)
li =

t∏

i=1

(
hxi+yi·m

)li

=

t∏

i=1

(hxi)
li

t∏

i=1

(hyi·m)
li =

t∏

i=1

h(xili)
t∏

i=1

h(yili)·m

= hv(0)+w(0)·m = hx+y·m

Before verification, the verifier collects and aggregates the
verifications keys of the authorities—this process happens only
once and ahead of time. The algorithms ProveCred and
VerifyCred implement verification. First, the users randomize
the credentials by picking a random r′ ∈ Fp and computing
σ′ = (h′, s′) = (hr

′
, sr

′
); then, they compute κ and ν from

the attribute m, a blinding factor r ∈ Fp and the aggregated
verification key:

κ = αβmgr2 and ν = (h′)r

3If an adversary A can obtain two credentials σ0 and σ1 on respectively
m0 = 0 and m1 = 1 with the same value h as follows: σ0 =
hx and σ1 = hx+y ; then A could forge a new credential σ2 on m2 = 2:
σ2 = (σ0)−1σ1σ1 = hx+2y .

user authority verifier

repeat
times

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

A.1 Security of the Malet Signature
Scheme

First, the co-CDH problem can be rephrased in this con-
text as follows: it is computationally unfeasible for an
algorithm C knowing only (g2,ga

2) 2 G2
2 and h 2 G1

(where a 2 Fp) to output ha 2 G1.
Then, Pointcheval et al. [30] proposed an assumption

based on the LRSW Assumption [28] and on the co-CDH
problem that can be rephrased in our context as follows.
Considering vk = (g2,gx

2,g
y
2) 2 G3

2 where x,y 2 F2
p, an

oracle O(m) on input m 2 Fp chooses a random h 2 G1\1
and outputs the pair s = (h,e) = (h,hx+my); given vk and
unlimited access to O , it is computationally unfeasible to
output s for a new m0 2 Fp that has not been queried to
O .

Finally, we create a modified oracle O 0 that acts ex-
actly as O but doesn’t generate h at random; it computes
h = H(gm

1) instead. Under the Random Oracle Assump-
tion, the EUF-CMA security of our scheme follows from
the above since the modified oracle O 0 is perfectly equiv-
alent to a signing oracle.

A.2 Security of the Malet Anonymous Cre-
dentials Scheme

The following paragraphs argue about the unforgeabil-
ity, unlinkability and blindness of the Malet anonymous
credentials scheme.

Unforgeability. The unforgeability of the Malet
anonymous credentials scheme relies on the unforgeabil-
ity of the underlying signature scheme (see Theorem 1).
It can be shown that if there is a forger A capable of
forging a credential, then an algorithm C can query A
to break the underlying signature scheme. Intuitively,
C would execute PrepareBlindSign and get a forgery
from A on a hidden attribute m; then uses her private
El-Gamal key to call Unblind on the credential and
output a valid forgery on the signature scheme.

Unlinkability. The unlinkability property means that
the verifier cannot link multiple executions of the
ShowSign $ BlindVerify protocol between each other
or with the execution of PrepareBlindSign $ Blind-
Sign (for a given attribute m). This property is enabled
by the possibility to re-randomize the signature. Intu-
itively, given two randomized signatures, s0 and s1 on
the attributes m0 and m1, respectively; there is no adver-
sary capable to distinguish which one is a signature on
m0 and which one is a signature on m1, since both signa-
ture are randomly distributed over G2

1. More specifically,
considering signature s on the attribute m, one can pick a

random t 2 Fp and randomized this signature as follows:

s 0 = Randomize(s) = (ht ,e t)

Therefore, we can argue that since t is randomly dis-
tributed in Fp, s 0 is randomly distributed in G2

1.

Blindness. Blindness ensures that the signer will not
learn any additional information about the messages m
during the execution of BlindSign. This property is
guaranteed by the security properties of the El-Gamal
encryption system since the input of BlindSign is an
El-Gamal encryption of m. Also, the ShowBlindSign
algorithm does not reveal any information about m nei-
ther by the zero-knowledge property of the proof pv.

iii

17

Anonymous submission #9999 to ACM CCS 2017

[28] Gregory Maxwell. 2013. CoinJoin: Bitcoin privacy for the real world. https:
//bitcointalk.org/index.php?topic=279249. (2013).

[29] Sarah Meiklejohn and Rebekah Mercer. 2018. Möbius: Trustless Tumbling for
Transaction Privacy. In Proceedings of Privacy Enhancing Technologies.

[30] Andreas Pfitzmann and Marit Köhntopp. 2001. Anonymity, unobservability,
and pseudonymity—a proposal for terminology. In Designing privacy enhancing
technologies. Springer, 1–9.

[31] David Pointcheval and Olivier Sanders. 2016. Short randomizable signatures. In
Cryptographers’ Track at the RSA Conference. Springer, 111–126.

[32] Somindu C Ramanna and Palash Sarkar. 2016. Efficient adaptively secure IBBE
from the SXDH assumption. IEEE Transactions on Information Theory 62, 10
(2016), 5709–5726.

[33] Christian Reitwiessner. 2017. Ethereum Improvement Proposal 196 - Precompiled
contracts for addition and scalar multiplication on the elliptic curve alt_bn128.
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md. (2017).

[34] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. 2014. CoinShuffle: Prac-
tical Decentralized Coin Mixing for Bitcoin. In ESORICS (2) (Lecture Notes in
Computer Science), Vol. 8713. Springer, 345–364.

[35] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[36] The Guardian. 2013. History of 5-Eyes – Explainer. http://www.theguardian.com/

world/2013/dec/02/history-of-5-eyes-explainer. (2013).
[37] The Tor Project. 2016. meek-google suspended for terms of service violations

(how to set up your own). (2016). https://lists.torproject.org/pipermail/tor-talk/
2016-June/041699.html.

[38] Luke Valenta and Brendan Rowan. 2015. Blindcoin: Blinded, Accountable Mixes
for Bitcoin. In Financial Cryptography and Data Security, Michael Brenner,
Nicolas Christin, Benjamin Johnson, and Kurt Rohloff (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 112–126.

[39] Brent Waters. 2005. Efficient Identity-Based Encryption Without Random Ora-
cles.. In Eurocrypt, Vol. 3494. Springer, 114–127.

[40] Gavin Wood. 2016 (visited August 9, 2017). Ethereum: A Secure Decentralised
Generalised Transaction Ledger EIP-150 Revision. "http://gavwood.com/paper.
pdf". (2016 (visited August 9, 2017)).

A SKETCH OF SECURITY PROOFS
This appendix sketches the security proofs of the cryptographic
construction described in Section 3.

Unforgeability. First, the co-CDH problem can be rephrased in
this context as follows: it is computationally unfeasible for an al-
gorithm C knowing only (�2,�a

2) 2 G2
2 and h 2 G1 (where a 2 Fp)

to output ha 2 G1. Then, Pointcheval et al. [31] proposed an as-
sumption based on the LRSW Assumption [27] and on the co-CDH
problem that can be rephrased in our context as follows. Consid-
ering �k = (�2,�x

2 ,�
�
2) 2 G3

2 where x ,� 2 F2
p , an oracle O(m) on

input m 2 Fp chooses a random h 2 G1\1 and outputs the pair
� = (h, �) = (h,hx+� ·m); given �k and unlimited access to O, it is
computationally unfeasible to output � for a newm0 2 Fp that has
not been queried to O.

Finally, we create a modified oracle O0 that acts exactly as O but
doesn’t generate h at random; it computes h = H (�s1) instead as
described in Section 3.4. Under the Random Oracle Assumption, the
EUF-CMA security of our scheme follows from the above since the
modified oracle O0 is perfectly equivalent to a signing oracle.

Blindness. Blindness ensures that the signer will not learn any
additional information about the attribute m during the execution of
BlindSign. This property is guaranteed by the security properties
of the El-Gamal encryption system since the input of BlindSign
is an El-Gamal encryption of m. Also, the ShowBlindSign al-
gorithm does not reveal any information about m neither by the
zero-knowledge property of the proof �� .

Unlinkability. The unlinkability property means that the verifier
cannot link multiple executions of the ShowSign and BlindVerify

protocol between each other, or with the execution of Prepare-
BlindSign and BlindSign (for a given attribute m). This property is
enabled by the possibility to re-randomize the credential. Intuitively,
given two randomized credentials, �0 and �1 on the attributesm0 and
m1, respectively; there is no adversary capable to distinguish which
one embeds m0 and which one embeds m1, since both credentials
are randomly distributed over G2

1. More specifically, considering a
credential � on the attributem, one can pick a random r 0 2 Fp and
randomize this credential as follows:

� 0 = Randomize(�) = (hr 0 , sr 0)
Therefore, we can argue that since r 0 is randomly distributed in Fp ,
� 0 is randomly distributed in G2

1.

B ETHEREUM TUMBLER
We extend the example of the tumbler application described in Sec-
tion 5.1 to the Ethereum version of the Coconut library, with a few
modifications to reduce the gas costs incurred and to adapt the sys-
tem for Ethereum. Instead of having � (the number of coins) as an
attribute, which would increase the number of elliptic curve mul-
tipications required to verify the credentials, we allow for a fixed
number of instances of Coconut to be setup for different denomina-
tions for �. The Tumbler has a Deposit method, where users can
deposit Ether into the contract, and then send an issuance request
to authorities on one private attribute: addr | |s, where addr is the
destination address of the merchant, and s is a randomly generated
sequence number (1). It is necessary for addr to be a part of the
attribute because once the attribute is revealed, the credential can be
spent by anyone with knowledge of the attribute (including any peers
monitoring the blockchain for transactions), therefore the credential
must be bounded to a specific recipient address before it is revealed.
This issuance request is signed by the Ethereum address that de-
posited the Ether into the smart contract, as proof that the request
is associated with a valid deposit, and sent to the authorities (2). As
addr and s will be both revealed at the same time when withdrawing
the token, we concatenate these in one attribute to save elliptic curve
operations.

After the authorities issued the credentials to the users (3), they
aggregate them and re-randomize them as usual. The resulting token
can then be passed to the Withdraw function, where the withdrawer
reveals addr and s (4). As usual, the contract maintains a map of s
values associated with tokens that have already been withdrawn to
prevent double-spending. After checking that the token’s credentials
verifies and the it has not already been spent, the contract sends � to
the Ethereum destination address addr (5).

(�,�, c,�s)
(�̃i)

(�,�,�,�v)
t

12

Anonymous submission #9999 to ACM CCS 2017

[28] Gregory Maxwell. 2013. CoinJoin: Bitcoin privacy for the real world. https:
//bitcointalk.org/index.php?topic=279249. (2013).

[29] Sarah Meiklejohn and Rebekah Mercer. 2018. Möbius: Trustless Tumbling for
Transaction Privacy. In Proceedings of Privacy Enhancing Technologies.

[30] Andreas Pfitzmann and Marit Köhntopp. 2001. Anonymity, unobservability,
and pseudonymity—a proposal for terminology. In Designing privacy enhancing
technologies. Springer, 1–9.

[31] David Pointcheval and Olivier Sanders. 2016. Short randomizable signatures. In
Cryptographers’ Track at the RSA Conference. Springer, 111–126.

[32] Somindu C Ramanna and Palash Sarkar. 2016. Efficient adaptively secure IBBE
from the SXDH assumption. IEEE Transactions on Information Theory 62, 10
(2016), 5709–5726.

[33] Christian Reitwiessner. 2017. Ethereum Improvement Proposal 196 - Precompiled
contracts for addition and scalar multiplication on the elliptic curve alt_bn128.
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md. (2017).

[34] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. 2014. CoinShuffle: Prac-
tical Decentralized Coin Mixing for Bitcoin. In ESORICS (2) (Lecture Notes in
Computer Science), Vol. 8713. Springer, 345–364.

[35] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[36] The Guardian. 2013. History of 5-Eyes – Explainer. http://www.theguardian.com/

world/2013/dec/02/history-of-5-eyes-explainer. (2013).
[37] The Tor Project. 2016. meek-google suspended for terms of service violations

(how to set up your own). (2016). https://lists.torproject.org/pipermail/tor-talk/
2016-June/041699.html.

[38] Luke Valenta and Brendan Rowan. 2015. Blindcoin: Blinded, Accountable Mixes
for Bitcoin. In Financial Cryptography and Data Security, Michael Brenner,
Nicolas Christin, Benjamin Johnson, and Kurt Rohloff (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 112–126.

[39] Brent Waters. 2005. Efficient Identity-Based Encryption Without Random Ora-
cles.. In Eurocrypt, Vol. 3494. Springer, 114–127.

[40] Gavin Wood. 2016 (visited August 9, 2017). Ethereum: A Secure Decentralised
Generalised Transaction Ledger EIP-150 Revision. "http://gavwood.com/paper.
pdf". (2016 (visited August 9, 2017)).

A SKETCH OF SECURITY PROOFS
This appendix sketches the security proofs of the cryptographic
construction described in Section 3.

Unforgeability. First, the co-CDH problem can be rephrased in
this context as follows: it is computationally unfeasible for an al-
gorithm C knowing only (�2,�a

2) 2 G2
2 and h 2 G1 (where a 2 Fp)

to output ha 2 G1. Then, Pointcheval et al. [31] proposed an as-
sumption based on the LRSW Assumption [27] and on the co-CDH
problem that can be rephrased in our context as follows. Consid-
ering �k = (�2,�x

2 ,�
�
2) 2 G3

2 where x ,� 2 F2
p , an oracle O(m) on

input m 2 Fp chooses a random h 2 G1\1 and outputs the pair
� = (h, �) = (h,hx+� ·m); given �k and unlimited access to O, it is
computationally unfeasible to output � for a newm0 2 Fp that has
not been queried to O.

Finally, we create a modified oracle O0 that acts exactly as O but
doesn’t generate h at random; it computes h = H (�s1) instead as
described in Section 3.4. Under the Random Oracle Assumption, the
EUF-CMA security of our scheme follows from the above since the
modified oracle O0 is perfectly equivalent to a signing oracle.

Blindness. Blindness ensures that the signer will not learn any
additional information about the attribute m during the execution of
BlindSign. This property is guaranteed by the security properties
of the El-Gamal encryption system since the input of BlindSign
is an El-Gamal encryption of m. Also, the ShowBlindSign al-
gorithm does not reveal any information about m neither by the
zero-knowledge property of the proof �� .

Unlinkability. The unlinkability property means that the verifier
cannot link multiple executions of the ShowSign and BlindVerify

protocol between each other, or with the execution of Prepare-
BlindSign and BlindSign (for a given attribute m). This property is
enabled by the possibility to re-randomize the credential. Intuitively,
given two randomized credentials, �0 and �1 on the attributesm0 and
m1, respectively; there is no adversary capable to distinguish which
one embeds m0 and which one embeds m1, since both credentials
are randomly distributed over G2

1. More specifically, considering a
credential � on the attributem, one can pick a random r 0 2 Fp and
randomize this credential as follows:

� 0 = Randomize(�) = (hr 0 , sr 0)
Therefore, we can argue that since r 0 is randomly distributed in Fp ,
� 0 is randomly distributed in G2

1.

B ETHEREUM TUMBLER
We extend the example of the tumbler application described in Sec-
tion 5.1 to the Ethereum version of the Coconut library, with a few
modifications to reduce the gas costs incurred and to adapt the sys-
tem for Ethereum. Instead of having � (the number of coins) as an
attribute, which would increase the number of elliptic curve mul-
tipications required to verify the credentials, we allow for a fixed
number of instances of Coconut to be setup for different denomina-
tions for �. The Tumbler has a Deposit method, where users can
deposit Ether into the contract, and then send an issuance request
to authorities on one private attribute: addr | |s, where addr is the
destination address of the merchant, and s is a randomly generated
sequence number (1). It is necessary for addr to be a part of the
attribute because once the attribute is revealed, the credential can be
spent by anyone with knowledge of the attribute (including any peers
monitoring the blockchain for transactions), therefore the credential
must be bounded to a specific recipient address before it is revealed.
This issuance request is signed by the Ethereum address that de-
posited the Ether into the smart contract, as proof that the request
is associated with a valid deposit, and sent to the authorities (2). As
addr and s will be both revealed at the same time when withdrawing
the token, we concatenate these in one attribute to save elliptic curve
operations.

After the authorities issued the credentials to the users (3), they
aggregate them and re-randomize them as usual. The resulting token
can then be passed to the Withdraw function, where the withdrawer
reveals addr and s (4). As usual, the contract maintains a map of s
values associated with tokens that have already been withdrawn to
prevent double-spending. After checking that the token’s credentials
verifies and the it has not already been spent, the contract sends � to
the Ethereum destination address addr (5).

(�,�, c,�s)
(�̃i)

(�,�,�,�v)
t

12

Ether into the smart contract, as proof that the request is
associated with a valid deposit, and sent to the authorities (2).
As addr and s will be both revealed at the same time when
withdrawing the token, we concatenate these in one attribute
to save elliptic curve operations.

After the authorities issued the credentials to the users (3),
they aggregate them and re-randomize them as usual. The
resulting token can then be passed to the Withdraw function,
where the withdrawer reveals addr and s (4). As usual, the
contract maintains a map of s values associated with tokens
that have already been withdrawn to prevent double-spending.
After checking that the token’s credentials verifies and the
it has not already been spent, the contract sends v to the
Ethereum destination address addr (5).

(⇤, �)

(�,⇥, �0)

15

it has not already been spent, the contract sends v to the
Ethereum destination address addr (5).

(⇥, �0)

15

Fig. 2: Coconut threshold credentials protocol exchanges.

Finally, they send Θ = (κ, ν, σ′, πv) and φ′ to the verifier
where πv is a zero-knowledge proof asserting the correctness
of κ and ν; and that the private attribute m embedded
into σ satisfies the application-specific predicate φ′ (Ì). The
proof πv also ensures that the users actually know m and
that κ has been built using the correct verification keys
and blinding factors. The pairing verification is similar to
Pointcheval and Sanders [43] and Boneh et al. [10]; expressing
h′ = gr̃1 | r̃ ∈ Fp, the left-hand side of the pairing verification
can be expanded as:

e(h′, κ) = e(h′, g
(x+my+r)
2) = e(g1, g2)(x+my+r)r̃

and the right-hand side:

e(s′ν, g2) = e(h′(x+my+r), g2) = e(g1, g2)(x+my+r)r̃

From where the correctness of VerifyCred follows.

c) Security: The proof system we require is based on
standard sigma protocols to show knowledge of representation
of discrete logarithms, and can be rendered non-interactive
using the Fiat-Shamir heuristic [23] in the random oracle
model. As our signature scheme is derived from the ones due
to Pointcheval and Sanders [43] and BLS [10], we inherit their
assumptions as well; namely, LRSW [37] and XDH [10].

Theorem 1. Assuming LRSW, XDH, and the existence of
random oracles, Coconut is a secure threshold credentials
scheme, meaning it satisfies unforgeability (as long as fewer
than t authorities collude), blindness, and unlinkability.

A sketch of this proof, based on the security of the underlying
components of Coconut, can be found in Appendix A. Coconut
guarantees unforgeability as long as less than t authorities
collude (t > n/2), and guarantees blindness and unlinkability
no matter how many authorities collude (and even if the verifier
colludes with the authorities).

E. Multi-Attribute Credentials

We expand our scheme to embed multiple attributes into
a single credential without increasing its size; this generaliza-
tion follows directly from the Waters signature scheme [52]
and Pointcheval and Sanders [43]. The authorities’ key pairs
become:

sk = (x, y1, . . . , yq) and vk = (g2, g
x
2 , g

y1
2 , . . . , g

yq
2)

where q is the number of attributes. The multi-attribute creden-
tial is derived from the commitment cm and the group element

5

h as below:

cm = go1

q∏

j=1

h
mj

j and h = H(cm)

and the credential generalizes as follows:

σ = (h, hx+
∑q

j=1mjyj)

The credential’s size does not increase with the number of
attributes or authorities—it is always composed of two group
elements. The security proof of the multi-attribute scheme
relies on a reduction against the single-attribute scheme and
is analogous to Pointcheval and Sanders [43]. Moreover, it is
also possible to combine public and private attributes to keep
only a subset of the attributes hidden from the authorities,
while revealing some others; the BlindSign algorithm only
verifies the proof πs on the private attributes (similar to
Chase et al. [19]). The full primitives of the multi-attribute
cryptographic scheme are presented in Appendix B.

If the credentials include only non-random attributes, the
verifier could guess its value by brute-forcing the verification
algorithm4. This issue is prevented by always embedding a
private random attribute into the credentials, that can also act
as the authorization key for the credential.

IV. IMPLEMENTATION

We implement a Python library for Coconut as described
in Section III and publish the code on GitHub as an open-
source project5. We also implement a smart contract library
in Chainspace [1] to enable other application-specific smart
contracts (see Section V) to conveniently use our cryptographic
primitives. We present the design and implementation of the
Coconut smart contract library in Section IV-A. In addition, we
implement and evaluate some of the functionality of the Co-
conut smart contract library in Ethereum [53] (Section IV-B).
Finally, we show how to integrate Coconut into existing semi-
permissioned blockchains (Section IV-C).

A. The Coconut Smart Contract Library

We implement the Coconut smart contract in Chainspace6

(which can be used by other application-specific smart con-
tracts) as a library to issue and verify randomizable threshold
credentials through cross-contract calls. The contract has four
functions, (Create, Request, Issue, Verify), as illustrated
in Figure 3. First, a set of authorities call the Create
function to initialize a Coconut instance defining the contract
info; i.e., their verification key, the number of authorities and
the threshold parameter (Ê). The initiator smart contract can
specify a callback contract that needs to be executed by the
user in order to request credentials; e.g., this callback can be
used for authentication. The instance is public and can be read
by the user (Ë); any user can request a credential through the
Request function by executing the specified callback contract,
and providing the public and private attributes to include in

4Let assume for example that some credentials include a single attribute m
representing the age of the user; the verifier can run the verification algorithm
e(h, κ(α · βm)−1) = e(ν, g2) for every m ∈ [1, 100] and guess the value
of m.

5https://github.com/asonnino/coconut
6https://github.com/asonnino/coconut-chainspace

issue

Ledger

request

create

verify

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

contract infocontract info

attributes attributes

credentials

credentials

credentials authorities

Fig. 3: The Coconut smart contract library.

the credentials (Ì). The public attributes are simply a list of
clear text strings, while the private attributes are encrypted as
described in Section III-D. Each signing authority monitors
the blockchain at all times, looking for credential requests.
If the request appears on the blockchain (i.e., a transaction
is executed), it means that the callback has been correctly
executed (Í); each authority issues a partial credential on the
specified attributes by calling the Issue procedure (Î). In our
implementation, all partial credentials are in the blockchain;
however, these can also be provided to the user off-chain. Users
collect a threshold number of partial credentials, and aggregate
them to form a full credential (Ï). Then, the users locally
randomize the credential. The last function of the Coconut
library contract is Verify that allows the blockchain—and
anyone else—to check the validity of a given credential (Ð).

A limitation of this architecture is that it is not efficient
for the authorities to continuously monitor the blockchain.
Section IV-C explains how to overcome this limitation by em-
bedding the authorities into the nodes running the blockchain.

B. Ethereum Smart Contract Library

To make Coconut more widely available, we also imple-
ment it in Ethereum—a popular permissionless smart contract
blockchain [53]. We release the Coconut Ethereum smart
contract as an open source library7. The library is written in
Solidity, a high-level JavaScript-like language that compiles
down to Ethereum Virtual Machine (EVM) assembly code.
Ethereum recently hardcoded a pre-compiled smart contract
in the EVM for performing pairing checks and elliptic curve
operations on the alt bn128 curve [14], [45], for efficient
verification of zkSNARKs. The execution of an Ethereum
smart contract has an associated ‘gas cost’, a fee that is paid
to miners for executing a transaction. Gas cost is calculated
based on the operations executed by the contract; i.e., the more
operations, the higher the gas cost. The pre-compiled contracts
have lower gas costs than equivalent native Ethereum smart
contracts.

7https://github.com/musalbas/coconut-ethereum

6

We use the pre-compiled contract for performing a pairing
check, in order to implement Coconut verification within a
smart contract. The Ethereum code only implements ellip-
tic curve addition and scalar multiplication on G1, whereas
Coconut requires operations on G2 to verify credentials.
Therefore, we implement elliptic curve addition and scalar
multiplication on G2 as an Ethereum smart contract library
written in Solidity that we also release open source8. This
is a practical solution for many Coconut applications, as
verifying credentials with one revealed attribute only requires
one addition and one scalar multiplication. It would not be
practical however to verify credentials with attributes that will
not be revealed—this requires three G2 multiplications using
our elliptic curve implementation, which would exceed the
current Ethereum block gas limit (8M as of February 2018).

We can however use the Ethereum contract to design a
federated peg for side chains, or a coin tumbler as an Ethereum
smart contract, based on credentials that reveal one attribute.
We go on to describe and implement this tumbler using
the Coconut Chainspace library in Section V-A, however the
design for the Ethereum version differs slightly to avoid the
use of attributes that will not be revealed, which we describe
in Appendix C. The library shares the same functions as
the Chainspace library described in Section IV-A, except for
Request and Issue which are computed off the blockchain to
save gas costs. As Request and Issue functions simply act as
a communication channel between users and authorities, users
can directly communicate with authorities off the blockchain
to request tokens. This saves significant gas costs that would
be incurred by storing these functions on the blockchain.
The Verify function simply verifies tokens against Coconut
instances created by the Create function.

C. Deeper Blockchain Integration

The designs described in Section IV-A and Section IV-B
rely on authorities on-the-side for issuing credentials. In this
section, we present designs that incorporate Coconut authori-
ties within the infrastructure of a number of semi-permissioned
blockchains. This enables the issuance of credentials as a side
effect of the normal system operations, taking no additional
dependency on extra authorities. It remains an open problem
how to embed Coconut into permissionless systems, based on
proof of work or stake. These systems have a highly dynamic
set of nodes maintaining the state of their blockchains, which
cannot readily be mapped into Coconut issuing authorities.

Integration of Coconut into Hyperledger Fabric [15]—a
permissioned blockchain platform—is straightforward. Fabric
contracts run on private sets of computation nodes—and use
the Fabric protocols for cross-contract calls. In this setting,
Coconut issuing authorities can coincide with the Fabric smart
contract authorities. Upon a contract setup, they perform the
setup and key distribution, and then issue partial credentials
when authorized by the contract. For issuing Coconut cre-
dentials, the only secrets maintained are the private issuing
keys; all other operations of the contract can be logged and
publicly verified. Coconut has obvious advantages over using
traditional CL credentials relying on a single authority—as
currently present in the Hyperledger roadmap9. The threshold

8https://github.com/musalbas/solidity-BN256G2
9http://nick-fabric.readthedocs.io/en/latest/idemix.html

buffer

issue

withdraw

Ledger

merchant

authorities

deposit

withdraw

token

pay

issue token

submit token

submit token

receive money

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

Fig. 4: The coin tumbler application.

trust assumption—namely that integrity and availability is
guaranteed under the corruption of a subset of authorities is
preserved, and prevents forgeries by a single corrupted node.

We can also naturally embed Coconut into sharded scalable
blockchains, as exemplified by Chainspace [1] (which supports
general smart contracts), and Omniledger [34] (which supports
digital tokens). In these systems, transactions are distributed
and executed on ‘shards’ of authorities, whose membership
and public keys are known. Coconut authorities can naturally
coincide with the nodes within a shard—a special transaction
type in Omniledger, or a special object in Chainspace, can
signal to them that issuing a credential is authorized. The
authorities, then issue the partial signature necessary to recon-
struct the Coconut credential, and attach it to the transaction
they are processing anyway. Users can aggregate, re-randomize
and show the credential.

V. APPLICATIONS

In this section, we present three applications that leverage
Coconut to offer improved security and privacy properties—
a coin tumbler (Section V-A), a privacy-preserving petition
system (Section V-B), and a system for censorship-resistant
distribution of proxies (Section V-C). For generality, the ap-
plications assume authorities external to the blockchain, but
these can also be embedded into the blockchain as described
in Section IV-C.

A. Coin Tumbler

We implement a coin tumbler (or mixer) on Chainspace
as depicted in Figure 4. Coin tumbling is a method to mix
cryptocurrency associated with an address visible in a public
ledger with other addresses, to “clean” the coins and obscure
the trail back to the coins’ original source address. A limitation
of previous similar schemes [11], [51], [28], [38], [46], [7],
[39] is that they are either centralized (i.e., there is a central
authority that operates the tumbler, which may go offline),

7

or require users to coordinate with each other. The Coconut
tumbler addresses these issues via a distributed design (i.e., se-
curity relies on a set of multiple authorities that are collectively
trusted to contain at least t honest ones), and does not require
users to coordinate with each other. Zcash [47] achieves a
similar goal: it theoretically hides the totality of the transaction
but at a large computational cost, and offers the option to
cheaply send transactions in clear. In practice, the compu-
tational overhead of sending hidden transactions makes it
impractical, and only a few users take advantage of the optional
privacy provided by Zcash; as a result, transactions are easy to
de-anonymize [30], and recent works aim to reduce the compu-
tational overhead of Zcash hidden transactions [12]. Coconut
provides efficient proofs taking only a few milliseconds (see
Section VI), and makes hidden transactions practical. Trust
assumptions in Zcash are different from Coconut. However,
instead of assuming a threshold number of honest authorities,
Zcash relies on zk-SNARKs which assumes a setup algorithm
executed by a trusted authority10. Möbius [39]—which was
developed concurrently—is a coin tumbler based on Ethereum
smart contracts that achieves strong notions of anonymity and
low off-chain communication complexity. Möbius relies on
ring signatures to allow parties to prove group membership
without revealing exactly which public key belongs to them.

Our tumbler uses Coconut to instantiate a pegged side-
chain [3], providing stronger value transfer anonymity than
the original cryptocurrency platform, through unlinkability
between issuing a credential representing an e-coin [20], and
spending it. The tumbler application is based on the Coconut
contract library and an application specific smart contract
called “tumbler”.

A set of authorities jointly create an instance of the Coconut
smart contract as described in Section IV-A and specify the
smart contract handling the coins of the underlying blockchain
as callback. Specifically, the callback requires a coin transfer
to a buffer account. Then users execute the callback and pay
v coins to the buffer to ask a credential on the public attribute
v, and on two private attributes: the user’s private key k and
a randomly generated sequence number s (Ê). Note that to
prevent tracing traffic analysis, v should be limited to a specific
set of possible values (similar to cash denominations). The
request is accepted by the blockchain only if the user deposited
v coins to the buffer account (Ë).

Each authority monitors the blockchain and detects the
request (Ì); and issues a partial credential to the user (either
on chain or off-chain) (Í). The user aggregates all partial
credentials into a consolidated credential, re-randomizes it, and
submits it as coin token to a merchant. First, the user produces
a zk-proof of knowledge of its private key by binding the proof
to the merchant’s address addr; then, the user provides the
merchant with the proof along with the sequence number s
and the consolidated credential (Î). The coins can only be
spent with knowledge of the associated sequence number and
by the owner of addr. To accept the above as payment, the
merchant submits the token by showing the credential and a
group element ζ = gs1 ∈ G1 to the tumbler contract along with
a zero-knowledge proof ensuring that ζ is well-formed (Ï). To
prevent double spending, the tumbler contract keeps a record of

10Recent proposals aim to distribute this trusted setup [24].

vote

Ledger

petition
creator

citizen

proof of identity

authorities

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

credentials

sign petition

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

create petition happens every
campaign

happens
only once

Fig. 5: The petition application.

all elements ζ that have already been shown. Upon showing a
ζ embedding a fresh (unspent) sequence number s, the contract
verifies that the credential and zero-knowledge proofs check,
and that ζ doesn’t already appear in the spent list. Then it
withdraws v coins from the buffer (Ð), sends them to be
received by the merchant account determined by addr, and
adds ζ to the spent list (Ñ). For the sake of simplicity, we
keep the transfer value v in clear-text (treated as a public
attribute), but this could be easily hidden by integrating a range
proof; this can be efficiently implemented using the technique
developed by Bünz et al. [13].

Security consideration. Coconut provides blind issuance
which allows the user to obtain a credential on the sequence
number s without the authorities learning its value. Without
blindness, any authority seeing the user key k could potentially
race the user and the merchant, and spend it—blindness pre-
vents authorities from stealing the token. Furthermore, Coconut
provides unlinkability between the pay phase (Ê) and the
submit phase (Î) (see Figure 4), and prevents any authority or
third parties from keeping track of the user’s transactions. As
a result, a merchant can receive payments for good or services
offered, yet not identify the purchasers. Keeping a spent list of
all elements ζ prevents double-spending attacks [31] without
revealing the sequence number s; this prevents an attacker from
exploiting a race condition in the submit token phase (Ï) and
lock user’s funds11. Finally, this application prevents a single
authority from creating coins to steal all the money in the
buffer. The threshold property of Coconut implies that the
adversary needs to corrupt at least t authorities for this attack
to be possible. A small subset of authorities cannot block the
issuance of a token—the service is guaranteed to be available
as long as at least t authorities are running.

B. Privacy-preserving petition

We consider the scenario where several authorities man-
aging the country C wish to issue some long-term credentials

11An attacker observing a sequence number s during a submit token
phase (Ï) could exploit a race condition to lock users fund by quickly buying
a token using the same s, and spending it before the original submit token
phase is over.

8

to its citizens to enable any third party to organize a privacy-
preserving petition. All citizens of C are allowed to participate,
but should remain anonymous and unlinkable across petitions.
This application extends the work of Diaz et al. [22] which
does not consider threshold issuance of credentials.

Our petition system is based on the Coconut library con-
tract and a simple smart contract called “petition”. There are
three types of parties: a set of signing authorities representing
C, a petition initiator, and the citizens of C. The signing
authorities create an instance of the Coconut smart contract
as described in Section IV-A. As shown in Figure 5, the
citizen provides a proof of identity to the authorities (Ê). The
authorities check the citizen’s identity, and issue a blind and
long-term signature on her private key k. This signature, which
the citizen needs to obtain only once, acts as her long term
credential to sign any petition (Ë).

Any third party can create a petition by creating a new
instance of the petition contract and become the “owner” of the
petition. The petition instance specifies an identifier gs ∈ G1

unique to the petition where its representation is unlinkable to
the other points of the scheme12, as well as the verification key
of the authorities issuing the credentials and any application
specific parameters (e.g., the options and current votes) (Ì). In
order to sign a petition, the citizens compute a value ζ = gks .
They then adapt the zero-knowledge proof of the ProveCred
algorithm of Section III-D to show that ζ is built from the
same attribute k in the credential; the petition contract checks
the proofs and the credentials, and checks that the signature
is fresh by verifying that ζ is not part of a spent list. If
all the checks pass, it adds the citizens’ signatures to a list
of records and adds ζ to the spent list to prevents a citizen
from signing the same petition multiple times (prevent double
spending) (Í). Also, the zero-knowledge proof ensures that ζ
has been built from a signed private key k; this means that
the users correctly executed the callback to prove that they are
citizens of C.

Security consideration. Coconut’s blindness property prevents
the authorities from learning the citizen’s secret key, and
misusing it to sign petitions on behalf of the citizen. Another
benefit is that it lets citizens sign petitions anonymously;
citizens only have to go through the issuance phase once,
and can then re-use credentials multiple times while staying
anonymous and unlinkable across petitions. Coconut allows for
distributed credentials issuance, removing a central authority
and preventing a single entity from creating arbitrary creden-
tials to sign petitions multiple times.

C. Censorship-resistant distribution of proxies

Proxies can be used to bypass censorship, but often become
the target of censorship themselves. We present a system based
on Coconut for censorship-resistant distribution of proxies
(CRS). In our CRS, the volunteer V runs proxies, and is known
to the Coconut authorities through its long-term public key.
The authorities establish reputability of volunteers (identified
by their public keys) through an out of band mechanism. The
user U wants to find proxy IP addresses belonging to reputable
volunteers, but volunteers want to hide their identity. As shown

12This identifier can be generated through a hash function Fp → G1 :
H̃(s) = gs | s ∈ Fp.

Ledger

volunteer

proof of identity

authorities

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

credentials

request

Ledger

user

proxy info

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

connection

proxy
authentication

proxy

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

proxy info

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

request info

proxy
operation

register

random t 2 Fp and randomized this signature as follows:

s 0 = Randomize(s) = (ht ,e t)

Therefore, we can argue that since t is randomly dis-
tributed in Fp, s 0 is randomly distributed in G2

1.

Blindness. Blindness ensures that the signer will not
learn any additional information about the messages m
during the execution of BlindSign. This property is
guaranteed by the security properties of the El-Gamal
encryption system since the input of BlindSign is an
El-Gamal encryption of m. Also, the ShowBlindSign
algorithm does not reveal any information about m nei-
ther by the zero-knowledge property of the proof pv.

pppkkk000

17

Fig. 6: The censorship-resistant proxy distribution system.

in Figure 6, V gets an ephemeral public key pk′ from the
proxy (Ê), provides proof of identity to the authorities (Ë),
and gets a credential on two private attributes: the proxy IP
address, pk′, and the time period δ for which it is valid (Ì).

V shares the credential with the concerned proxy (Í),
which creates the proxy info including pk′, δ, and the creden-
tial; the proxy ‘registers’ itself by appending this information
to the blockchain along with a zero-knowledge proof and the
material necessary to verify the validity of the credential (Î).

The users U monitor the blockchain for proxy registrations.
When a registration is found, U indicates the intent to use a
proxy by publishing to the blockchain a request info message
which looks as follows: user IP address encrypted under pk′
which is embedded in the registration blockchain entry (Ï).
The proxy continuously monitors the blockchain, and upon
finding a user request addressed to itself, connects to U and
presents proof of knowledge of the private key associated with
pk′ (Ð). U verifies the proof, the proxy IP address and its
validity period, and then starts relaying its traffic through the
proxy.

Security consideration. A common limitation of censorship
resistance schemes is relying on volunteers that are assumed
to be resistant to coercion: either (i) the volunteer is a large,
commercial organisation (e.g., Amazon or Google) over which
the censor cannot exert its influence; and/or (ii) the volunteer is
located outside the country of censorship. However, both these
assumptions were proven wrong [50], [49]. The proposed CRS
overcomes this limitation by offering coercion-resistance to
volunteers from censor-controlled users and authorities. Due to
Coconut’s blindness property, a volunteer can get a credential
on its IP address and ephemeral public key without revealing
those to the authorities. The users get proxy IP addresses run
by the volunteer, while being unable to link it to the volun-
teer’s long-term public key. Moreover, the authorities operate
independently and can be controlled by different entities, and
are resilient against a threshold number of authorities being
dishonest or taken down.

9

Operation µ [ms]
√
σ2 [ms]

PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
Unblind 0.445 ± 0.002
AggCred 0.454 ± 0.000
ProveCred 1.544 ± 0.001
VerifyCred 10.497 ± 0.002

TABLE I: Execution times for the cryptographic primitives described in
Section III, measured for one private attribute over 10,000 runs. AggCred is
computed assuming two authorities; the other primitives are independent of
the number of authorities.

Number of authorities: n, Signature size: 132 bytes
Transaction complexity size [B]
Signature on one public attribute:
Ê request credential O(n) 32
Ë issue credential O(n) 132
Ì verify credential O(1) 162

Signature on one private attribute:
Ê request credential O(n) 516
Ë issue credential O(n) 132
Ì verify credential O(1) 355

TABLE II: Communication complexity and transaction size for the Coconut
credentials scheme when signing one public and one private attribute (see
Figure 2 of Section III).

VI. EVALUATION

We present the evaluation of the Coconut threshold creden-
tials scheme; first we present a benchmark of the cryptographic
primitives described in Section III and then we evaluate the
smart contracts described in Section V.

A. Cryptographic Primitives

We implement the primitives described in Section III in
Python using petlib13 and bplib14. The bilinear pairing is
defined over the Barreto-Naehrig [32] curve, using OpenSSL
as arithmetic backend.

a) Timing benchmark: Table I shows the mean (µ) and
standard deviation (

√
σ2) of the execution of each procedure

described in section Section III. Each entry is the result of
10,000 runs measured on an Octa-core Dell desktop computer,
3.6GHz Intel Xeon. Signing is much faster than verifying
credentials—due to the pairing operation in the latter; veri-
fication takes about 10ms; signing a private attribute is about
3 times faster.

b) Communication complexity and packets size: Ta-
ble II shows the communication complexity and the size of
each exchange involved in the Coconut credentials scheme,
as presented in Figure 2. The communication complexity is
expressed as a function of the number of signing authorities
(n), and the size of each attribute is limited to 32 bytes as the
output of the SHA-2 hash function. The size of a credential
is 132 bytes. The highest transaction sizes are to request and
verify credentials embedding a private attribute; this is due

13https://github.com/gdanezis/petlib
14https://github.com/gdanezis/bplib

1 2 3 4 5 6 7 8 9 10
Threshold parameter

0

100

200

300

400

500

600

C
lie

nt
 L

at
en

cy
 [m

s]

Public attribute
Private attribute

Fig. 7: Client-perceived latency for Coconut threshold credentials scheme
with geographically distributed authorities, measured for one attribute over
100 runs.

to the proofs πs and πv (see Section III). The proof πs is
approximately 318 bytes and πv is 157 bytes.

c) Client-perceived latency: We evaluate the client-
perceived latency for the Coconut threshold credentials scheme
for authorities deployed on Amazon AWS [2] when issuing
partial credentials on one public and one private attribute. The
client requests a partial credential from 10 authorities, and
latency is defined as the time it waits to receive t-out-of-10
partial signatures. Figure 7 presents measured latency for a
threshold parameter t ranging from 1–10. The dots correspond
to the average latency and the error-bars represent the normal-
ized standard deviation, computed over 100 runs. The client is
located in London while the 10 authorities are geographically
distributed across the world; US East (Ohio), US West (N.
California), Asia Pacific (Mumbai), Asia Pacific (Singapore),
Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central),
EU (Frankfürt), EU (London), and South America (São Paulo).
All machines are running a fresh 64-bit Ubuntu distribution,
the client runs on a large AWS instance and the authorities
run on nano instances.

As expected, we observe that the further the authorities are
from the client, the higher the latency due to higher response
times; the first authorities to respond are always those situated
in Europe, while Sidney and Tokyo are the latest. Latency
grows linearly, with the exception of a large jump (of about
150 ms) when t increases from 2 to 3—this is due to the
7 remaining authorities being located outside Europe. The
latency overhead between credential requests on public and
private attributes remains constant.

B. Chainspace Implementation

We evaluate the Coconut smart contract library imple-
mented in Chainspace, as well as the the coin tumbler (Sec-
tion V-A) and the privacy-preserving e-petition (Section V-B)
applications that use this library. As expected, Table III shows
that the most time consuming procedures are the checker of
Create and the checker of Verify; i.e., they call the VerifyCred

10

Coconut smart contract library

Operation µ [ms]
√
σ2 [ms] size [kB]

Create [g] 0.195 ± 0.065 ∼ 1.38
Create [c] 12.099 ± 0.471 -
Request [g] 7.094 ± 0.641 ∼ 3.77
Request [c] 6.605 ± 0.559 -
Issue [g] 4.382 ± 0.654 ∼ 3.08
Issue [c] 0.024 ± 0.001 -
Verify [g] 5.545 ± 0.859 ∼ 1.76
Verify [c] 10.814 ± 1.160 -

TABLE III: Timing and transaction size of the Chainspace implementation
of the Coconut smart contract library described in Section IV-A, measured
for two authorities and one private attributes over 10,000 runs. The notation
[g] denotes the execution the procedure and [c] denotes the execution of the
checker.

Coin tumbler

Operation µ [ms]
√
σ2 [ms] size [kB]

InitTumbler [g] 0.235 ± 0.065 ∼ 1.38
InitTumbler [c] 19.359 ± 0.773 -
Pay [g] 11.939 ± 0.792 ∼ 4.28
Pay [c] 6.625 ± 0.559 -
Redeem [g] 0.132 ± 0.012 ∼ 3.08
Redeem [c] 11.742 ± 0.757 -

TABLE IV: Timing and transaction size of the Chainspace implementation
of the coin tumbler smart contract (described in Section V-A), measured over
10,000 runs. The transactions are independent of the number of authorities.
The notation [g] denotes the execution the procedure and [c] denotes the
execution of the checker.

primitives which takes about 10 ms (see Table I). Table III
is computed assuming two authorities; the transaction size
of Issue increases by about 132 bytes (i.e., the size of
the credentials) for each extra authority15 while the other
transactions are independent of the number of authorities.

Similarly, the most time consuming procedure of the coin
tumbler (Table IV) application and of the privacy-preserving
e-petition (Table V) are the checker of InitTumbler and the
checker of SignPetition, respectively; these two checkers call
the BlindVerify primitive involving pairing checks. The Pay
procedure of the coin tumbler presents the highest transaction
size as it is composed of two distinct transactions: a coin trans-
fer transaction and a Request transaction from the Coconut
contract library. However, they are all practical, and they all
run in a few milliseconds. These transactions are independent
of the number of authorities as issuance is either handled off-
chain or by the Coconut smart contract library.

C. Ethereum Implementation

We evaluate the Coconut Ethereum smart contract library
described in Section IV-B using the Go implementation of
Ethereum on an Intel Core i5 laptop with 12GB of RAM
running Ubuntu 17.10. Table VI shows the execution times
and gas costs for different procedures in the smart contract.
The execution times for Create and Verify are higher than
the execution times for the Chainspace version (Table III) of
the library, due to the different implementations. The arith-
metic underlying Coconut in Chainspace is performed through

15The Request and Issue procedures are only needed in the case of on-
chain issuance (see Section IV-A).

Privacy-preserving e-petition

Operation µ [ms]
√
σ2 [ms] size [kB]

InitPetition [g] 3.260 ± 0.209 ∼ 1.50
InitPetition [c] 3.677 ± 0.126 -
SignPetition [g] 7.999 ± 0.467 ∼ 3.16
SignPetition [c] 15.801 ± 0.537 -

TABLE V: Timing and transaction size of the Chainspace implementation
of the privacy-preserving e-petition smart contract (described in Section V-B),
measured over 10,000 runs. The transactions are independent of the number
of authorities. The notation [g] denotes the execution the procedure and [c]
denotes the execution of the checker.

Coconut Ethereum smart contract library

Operation µ [ms]
√
σ2 [ms] gas

Create 27.45 ± 3.054 ∼ 23, 000
Verify 120.17 ± 25.133 ∼ 2, 150, 000

TABLE VI: Timing and gas cost of the Ethereum implementation of the
Coconut smart contract library described in Section IV-B. Measured over 100
runs, for one public attribute. The transactions are independent of the number
of authorities.

Python naively binding to C libraries, while in Ethereum
arithmetic is defined in solidity and executed by the EVM.

We also observe that the Verify function has a significantly
higher gas cost than Create. This is mostly due to the imple-
mentation of elliptic curve multiplication as a native Ethereum
smart contract—the elliptic curve multiplication alone costs
around 1, 700, 000 gas, accounting for the vast majority of the
gas cost, whereas the pairing operation using the pre-compiled
contract costs only 260,000 gas. The actual fiat USD costs
corresponding to those gas costs, fluctuate wildly depending
on the price of Ether—Ethereum’s internal value token—the
load on the network, and how long the user wants to wait for
the transaction to be mined into a block. As of February 7th
2018, for a transaction to be confirmed within 6 minutes, the
transaction fee for Verify is $1.74, whereas within 45 seconds,
the transaction fee is $43.5.16

The bottleneck of our Ethereum implementation is the
high-level arithmetic in G2. However, Ethereum provides a
pre-compiled contract for arithmetic operations in G1. We
could re-write our cryptographic primitives by swapping all
the operations in G1 and G2, at the cost of relying on the
SXDH assumption [44] (which is stronger than the standard
XDH assumption that we are currently using).

VII. COMPARISON WITH RELATED WORKS

We compare the Coconut cryptographic constructions and
system with related work in Table VII, along the dimensions
of key properties offered by Coconut—blindness, unlinkability,
aggregability (i.e., whether multiple authorities are involved in
issuing the credential), threshold aggregation (i.e., whether a
credential can be aggregated using signatures issued by a sub-
set of authorities), and signature size (see Sections II and III).

16https://ethgasstation.info/

11

Scheme Blindness Unlinkable Aggregable Threshold Size

[52] Waters Signature 7 7 7 2 Elements
[36] LOSSW Signature 7 7 7 2 Elements
[9] BGLS Signature 3 7 3 1 Element
[16] CL Signature 3 3 7 O(q) Elements
[6] Idemix 3 3 7 O(q) Elements
[41] U-Prove 3 3 7 O(v) Elements
[4] ACL 3 3 7 O(v) Elements
[43] Pointcheval and Sanders 3 3 7 2 Elements
[26] Garman et al. 3 3 - 7 2 Elements
[Section III] Coconut 3 3 3 2 Elements

TABLE VII: Comparison of Coconut with other relevant cryptographic constructions. The aggregability of the signature scheme reads as follows; : not
aggregable, : sequentially aggregable, : aggregable. The signature size is measured asymptotically or in terms of the number of group elements it is made
of (for constant-size credentials); q indicates the number of attributes embedded in the credentials and v the number of times the credential may be shown
unlinkably.

a) Short and aggregable signatures: The Waters sig-
nature scheme [52] provides the bone structure of our prim-
itive, and introduces a clever solution to aggregate multiple
attributes into short signatures. However, the original Waters
signatures do not allow blind issuance or unlinkability, and
are not aggregable as they have not been built for use in a
multi-authority setting. Lu et al. scheme, commonly known
as LOSSW signature scheme [36], is also based on Waters
scheme and comes with the improvement of being sequentially
aggregable. In a sequential aggregate signature scheme, the
aggregate signature is built in turns by each signing authority;
this requires the authorities to communicate with each other
resulting in increased latency and cost. The BGLS signature [9]
scheme is built upon BLS signatures and is remarkable because
of its short signature size—signatures are composed of only
one group element. The BGLS scheme has a number of desir-
able properties as it is aggregable without needing coordination
between the signing authorities, and can be extended to work
in a threshold setting [8]. Moreover, Boneh et al. show how
to build verifiably encrypted signatures [9] which is close to
our requirements, but not suitable for anonymous credentials.

b) Anonymous credentials: CL Signatures [16], [35]
and Idemix [6] are amongst the most well-known building
blocks that inspired applications going from direct anonymous
attestations [21], [5] to electronic cash [18]. They provide blind
issuance and unlikability through randomization; but come
with significant computational overhead and credentials are
not short as their size grows linearly with the number of
signed attributes, and are not aggregable. U-Prove [41] and
Anonymous Credentials Light (ACL) [4] are computationally
efficient credentials that can be used once unlinkably; therefore
the size of the credentials is linear in the number of unlinkable
uses. Pointcheval and Sanders [43] present a construction
which is the missing piece of the BGLS signature scheme; it
achieves blindness by allowing signatures on committed values
and unlinkability through signature randomization. However,
it only supports sequential aggregation and does not provide
threshold aggregation. For anonymous credentials in a setting
where the signing authorities are also verifiers (i.e., without
public verifiability), Chase et al. [19] develop an efficient pro-
tocol. Its ‘GGM’ variant has a similar structure to Coconut, but
forgoes the pairing operation by using message authentication
codes (MACs). None of the above schemes support threshold
issuance.

While the scheme of Garman et al. [26] does not specifi-
cally focus on threshold issuance of credentials or on general
purpose credentials, it provides the ability to issue credentials
without central issuers supporting private attributes, blind
issuance, and unlinkable multi-show selective disclosure. To
obtain a credential, users build a vector commitment to their
secret key and a set of attributes; and append it to a ledger
along with a pseudonym built from the same secret key, and
a zk-proof asserting the correctness of the vector commitment
and of the pseudonym. To show a credential under a different
pseudonym, users scan the ledger for all credentials and build
a RSA accumulator; they provide a zk-proof that they know
a credential embedded in the accumulator. Similarly to Zero-
coin [40], showing credentials requires an expensive double
discrete-logarithm proof (about 50KB [26]); and the security
of the credentials scheme relies on the security of the ledger.
Coconut addresses the two open questions left as future work
by Garman et al. [26]; (i) the security of Coconut credentials
do not depend on the security of a transaction ledger as they
are general purpose credentials, and (ii) Coconut enjoys short
and efficient proofs as it builds from blind signatures and does
not require cryptographic accumulators.

c) Short and threshold issuance anonymous credentials:
Coconut extends these previous works by presenting a short,
aggregable, and randomizable credential scheme; allowing
threshold and blind issuance, and a multi-authority anonymous
credentials scheme. Coconut primitives do not require sequen-
tial aggregation, that is the aggregate operation does not have
to be performed by each signer in turn. Any independent party
can aggregate any threshold number of partial signatures into
a single aggregate credential, and verify its validity.

VIII. LIMITATIONS

Coconut has a number of limitations that are beyond the
scope of this work, and deferred to future work.

Adding and removing authorities implies to re-run the
key generation algorithm—this limitation is inherited from
the underlying Shamir’s secret sharing protocol [48] and
can be mitigated using techniques coming from proactive
secret sharing introduced by Herzberg et al. [29]. However,
credentials issued by authorities with different key sets are
distinguishable, and therefore frequent key rotation reduces the
privacy provided.

12

As any threshold system, Coconut is vulnerable if more
than the threshold number of authorities are malicious; collud-
ing authorities could create coins to steal all the coins in the
buffer of the coin tumbler application (Section V-A), create
fake identities or censor legitimate users of the electronic
petition application (Section V-B), and defeat the censorship
resistance of our proxy distribution application (Section V-C).
Note that users’ privacy is still guaranteed under colluding
authorities, or an eventual compromise of their keys.

Implementing the Coconut smart contract library on
Ethereum is expensive (Table VI) as Ethereum does not
provide pre-compiled contracts for elliptic curve arithmetic in
G2; re-writing our cryptographic primitives by swapping all
the operations in G1 and G2 would dramatically reduce the
gas cost, at the cost of relying on the SXDH assumption [44].

IX. CONCLUSION

Existing selective credential disclosure schemes do not
provide the full set of desired properties, particularly when
it comes to efficiency and issuing general purpose selective
disclosure credentials without sacrificing desirable distributed
trust assumptions. This limits their applicability in distributed
settings such as distributed ledgers, and prevents security
engineers from implementing separation of duty policies that
are effective in preserving integrity. In this paper, we present
Coconut—a novel scheme that supports distributed threshold
issuance, public and private attributes, re-randomization, and
multiple unlinkable selective attribute revelations. We provide
an overview of the Coconut system, and the cryptographic
primitives underlying Coconut; an implementation and eval-
uation of Coconut as a smart contract library in Chainspace
and Ethereum, a sharded and a permissionless blockchain
respectively; and three diverse and important application to
anonymous payments, petitions and censorship resistance. Co-
conut fills an important gap in the literature and enables general
purpose selective disclosure credentials—an important privacy
enhancing technology—to be efficiently used in settings with
no natural single trusted third party to issue them, and to
interoperate with modern transparent computation platforms.

ACKNOWLEDGEMENTS

George Danezis, Shehar Bano and Alberto Sonnino are
supported in part by EPSRC Grant EP/N028104/1 and the
EU H2020 DECODE project under grant agreement number
732546 as well as chainspace.io. Mustafa Al-Bassam is
supported by The Alan Turing Institute. Sarah Meiklejohn is
supported in part by EPSRC Grant EP/N028104/1. We thank
Jonathan Bootle, Andrea Cerulli, Natalie Eskinazi, and Moxie
Marlinspike for helpful suggestions on early manuscripts. We
extend our thanks the anonymous reviewers for their valuable
advice, and particularly to Christina Garman for kindly accept-
ing to shepherd the paper and her many insightful comments
and suggestions.

REFERENCES

[1] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A Sharded Smart Contracts Platform,” in Proceedings of
the Network and Distributed System Security Symposium (NDSS), 2018.

[2] I. Amazon Web Services, “Aws whitepapers,” ”https://aws.amazon.com/
whitepapers/”, 2017 (version April, 2017).

[3] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timón, and P. Wuille, “Enabling blockchain innovations
with pegged sidechains (2014),” URL: tinyurl. com/mj656p7, 2014.

[4] F. Baldimtsi and A. Lysyanskaya, “Anonymous credentials light,” in
ACM SIGSAC Conference. ACM, 2013, pp. 1087–1098.

[5] D. Bernhard, G. Fuchsbauer, E. Ghadafi, N. P. Smart, and B. Warinschi,
“Anonymous attestation with user-controlled linkability,” International
Journal of Information Security, vol. 12, no. 3, pp. 219–249, 2013.

[6] P. Bichsel, C. Binding, J. Camenisch, T. Groß, T. Heydt-Benjamin,
D. Sommer, and G. Zaverucha, “Cryptographic protocols of the identity
mixer library,” Tech. Rep. RZ 3730, Tech. Rep., 2009.

[7] G. Bissias, A. P. Ozisik, B. N. Levine, and M. Liberatore, “Sybil-
resistant mixing for bitcoin,” in Workshop on Privacy in the Electronic
Society, ser. WPES ’14. ACM, 2014, pp. 149–158.

[8] A. Boldyreva, “Efficient threshold signature, multisignature and blind
signature schemes based on the gap-diffie-hellman-group signature
scheme.” IACR Cryptology ePrint Archive, vol. 2002, p. 118, 2002.

[9] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Eurocrypt, vol.
2656. Springer, 2003, pp. 416–432.

[10] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” ASIACRYPT, pp. 514–532, 2001.

[11] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W.
Felten, “Mixcoin: Anonymity for bitcoin with accountable mixes,” in
Financial Cryptography 2014, 2014.

[12] S. Bowe, “Cultivating sapling: Faster zk-snarks,” https://z.cash/blog/
cultivating-sapling-faster-zksnarks, 2017 (version September 13, 2017).

[13] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,”
2018.

[14] V. Buterin and C. Reitwiessner, “Ethereum improvement proposal 197,”
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md, 2017.

[15] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in
Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[16] J. Camenisch and A. Lysyanskaya, “Signature schemes and anonymous
credentials from bilinear maps,” in Annual International Cryptology
Conference. Springer, 2004, pp. 56–72.

[17] J. Camenisch and M. Stadler, “Proof systems for general statements
about discrete logarithms,” 1997.

[18] S. Canard, D. Pointcheval, O. Sanders, and J. Traoré, “Divisible e-cash
made practical,” in Workshop on Public Key Cryptography. Springer,
2015, pp. 77–100.

[19] M. Chase, S. Meiklejohn, and G. Zaverucha, “Algebraic macs and
keyed-verification anonymous credentials,” in SIGSAC Conference on
Computer & Communications Security. ACM, 2014, pp. 1205–1216.

[20] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash,” in
Conference on the Theory and Application of Cryptography. Springer,
1988, pp. 319–327.

[21] L. Chen, D. Page, and N. P. Smart, “On the design and implementation
of an efficient daa scheme,” in International Conference on Smart Card
Research and Advanced Applications. Springer, 2010, pp. 223–237.

[22] C. Diaz, E. Kosta, H. Dekeyser, M. Kohlweiss, and G. Nigusse, “Privacy
preserving electronic petitions,” Identity in the Information Society,
vol. 1, no. 1, pp. 203–219, 2008.

[23] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Theory and Application of
Cryptographic Techniques. Springer, 1986, pp. 186–194.

[24] T. Z. Foundation, “Announcing the world’s largest multi-party com-
putation ceremony,” https://z.cash/technology/paramgen/, 2017 (version
November 11, 2017).

[25] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for
cryptographers,” Discrete Applied Mathematics, vol. 156, no. 16, pp.
3113–3121, 2008.

[26] C. Garman, M. Green, and I. Miers, “Decentralized anonymous creden-
tials.” in NDSS, 2014.

[27] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in Eurocrypt,
vol. 99. Springer, 1999, pp. 295–310.

13

[28] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
“Tumblebit: An untrusted bitcoin-compatible anonymous payment hub,”
in NDSS 2017, 2016.

[29] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive
secret sharing or: How to cope with perpetual leakage,” in Annual
International Cryptology Conference. Springer, 1995, pp. 339–352.

[30] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn, “An empirical
analysis of anonymity in zcash,” USENIX Security Symposium, 2018.

[31] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast
payments in bitcoin,” in ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 906–917.

[32] K. Kasamatsu, “Barreto-naehrig curves,” ”https://tools.ietf.org/id/
draft-kasamatsu-bncurves-01.html”, 2014 (version August 14, 2014).

[33] A. Kate, Y. Huang, and I. Goldberg, “Distributed key generation in
the wild,” Cryptology ePrint Archive, Report 2012/377, 2012, https:
//eprint.iacr.org/2012/377.

[34] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, and B. Ford,
“Omniledger: A secure, scale-out, decentralized ledger.” IACR Cryptol-
ogy ePrint Archive, vol. 2017, p. 406, 2017.

[35] K. Lee, D. H. Lee, and M. Yung, “Aggregating cl-signatures revisited:
Extended functionality and better efficiency,” in Financial Cryptography
and Data Security. Springer, 2013, pp. 171–188.

[36] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters, “Sequential
aggregate signatures, multisignatures, and verifiably encrypted signa-
tures without random oracles,” Journal of cryptology, vol. 26, no. 2,
pp. 340–373, 2013.

[37] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf, “Pseudonym
systems,” in International Workshop on Selected Areas in Cryptography.
Springer, 1999, pp. 184–199.

[38] G. Maxwell, “Coinjoin: Bitcoin privacy for the real world,” https://
bitcointalk.org/index.php?topic=279249, 2013.

[39] S. Meiklejohn and R. Mercer, “Möbius: Trustless tumbling for trans-
action privacy,” Proceedings on Privacy Enhancing Technologies, vol.
2018, no. 2, pp. 105–121, 2018.

[40] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anony-
mous distributed e-cash from bitcoin,” in Security and Privacy (SP),
2013 IEEE Symposium on. IEEE, 2013, pp. 397–411.

[41] C. Paquin and G. Zaverucha, “U-prove cryptographic specification v1.
1,” Technical Report, Microsoft Corporation, 2011.

[42] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in Cryptology Conference. Springer, 1991.

[43] D. Pointcheval and O. Sanders, “Short randomizable signatures,” in RSA
Conference. Springer, 2016, pp. 111–126.

[44] S. C. Ramanna and P. Sarkar, “Efficient adaptively secure ibbe from the
sxdh assumption,” IEEE Transactions on Information Theory, vol. 62,
no. 10, pp. 5709–5726, 2016.

[45] C. Reitwiessner, “Ethereum improvement proposal 196,” https://github.
com/ethereum/EIPs/blob/master/EIPS/eip-196.md, 2017.

[46] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical
decentralized coin mixing for bitcoin,” in ESORICS (2), ser. Lecture
Notes in Computer Science, vol. 8713. Springer, 2014, pp. 345–364.

[47] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in Security and Privacy (SP). IEEE, 2014, pp. 459–474.

[48] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[49] The Guardian, “History of 5-Eyes – Explainer,” http://www.theguardian.
com/world/2013/dec/02/history-of-5-eyes-explainer, 2013.

[50] The Tor Project, “meek-google suspended for terms of service violations
(how to set up your own),” 2016.

[51] L. Valenta and B. Rowan, “Blindcoin: Blinded, accountable mixes for
bitcoin,” in Financial Cryptography and Data Security, M. Brenner,
N. Christin, B. Johnson, and K. Rohloff, Eds., 2015, pp. 112–126.

[52] B. Waters, “Efficient identity-based encryption without random oracles.”
in Eurocrypt, vol. 3494. Springer, 2005, pp. 114–127.

[53] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger eip-150 revision,” ”http://gavwood.com/paper.pdf”, 2016 (visited
August 9, 2017).

APPENDIX A
SKETCH OF SECURITY PROOFS

This appendix sketches the security proofs of the crypto-
graphic construction described in Section III.

a) Unforgeability: There are two possible ways for an
adversary to forge a proof of a credential: (i) an adversary
without a valid credential nevertheless manages to form a proof
such that VerifyCred passes; and (ii), an adversary that has
successfully interacted with fewer than t authorities generates
a valid consolidated credential (of which they then honestly
prove possession using ProveCred).

Unforgeability in scenario (i) is ensured by the soundness
property of the zero-knowledge proof. For scenario (ii), run-
ning AggCred involves performing Lagrange interpolation.
If an adversary has fewer than t partial credentials, then
they have fewer than t points, which makes the resulting
polynomial (of degree t − 1) undetermined and information-
theoretically impossible to compute. The only option available
to the adversary is thus to forge the remaining credentials
directly. This violates the unforgeability of the underlying blind
signature scheme, which was proved secure by Pointcheval and
Sanders [43] under the LRSW assumption [37].

b) Blindness: Blindness follows directly from the blind-
ness of the signature scheme used during IssueCred, which
was largely proved secure by Pointcheval and Sanders [43] un-
der the XDH assumption [10]. There are only two differences
between their protocol and ours.

First, the Coconut authorities generate the credentials from
a group element h = H(cm) instead of from gr̃1 for random
r̃ ∈ Fp. The hiding property of the commitment cm, however,
ensures that H(cm) does not reveal any information about m.
Second, Pointcheval and Sanders use a commitment to the
attributes as input to BlindSign (see Section III-C), whereas
Coconut uses an encryption instead. The IND-CPA property,
however, of the encryption scheme ensures that the ciphertext
also reveals no information about m.

Concretely, Coconut uses Pedersen Commitments [42] for
the commitment scheme, which is secure under the discret
logarithm assumption. It uses El-Gamal for the encryption
scheme in G1, which is secure assuming DDH. Finally, it relies
on the blindness of the Pointcheval and Sanders signature,
which is secure assuming XDH [10]. As XDH implies both of
the previous two assumptions, our entire blindness argument
is implied by XDH.

c) Unlinkability / Zero-knowledge: Unlinkability and
zero-knowledge are guaranteed under the XDH assump-
tion [10]. The zero-knowledge property of the underlying proof
system ensures that ProveCred does not on its own reveal
anything more than the validity of the statement φ′, which
may include public attributes (see Section III-E and Appendix
B). The fact that credentials are re-randomized at the start
of ProveCred in turn ensures unlinkability, both between
different executions of ProveCred and between an execution
of ProveCred and of IssueCred.

14

APPENDIX B
MULTI-ATTRIBUTES CREDENTIALS

We present the cryptographic primitives behind the multi-
attribute Coconut threshold issuance credential scheme de-
scribed in Section III-E. As in Section III-D, we describe below
a key generation algorithm TTPKeyGen as executed by a
trusted third party; this protocol can however be execute in a
distributed way as illustrated by Kate et al. [33].

v Setup(1λ, q) → (params): Choose a bilinear group
(G1,G2,GT) with order p, where p is an λ-bit prime
number. Let g1, h1, . . . , hq be generators of G1, and g2 a
generator of G2. The system parameters are params =
(G1,G2,GT , p, g1, g2, h1, . . . , hq).

v TTPKeyGen(params, t, n, q) → (sk, vk): Choose (q +
1) polynomials of degree (t − 1) with coefficients in Fp,
noted (v, w1, . . . , wq), and set:

(x, y1, . . . yq) = (v(0), w1(0), . . . , wq(0))

Issue a secret key ski to each authority i ∈ [1, . . . , n] as
below:

ski = (xi, yi,1, . . . , yi,q) = (v(i), w1(i), . . . , wq(i))

and publish their verification key vki computed as follows:

vki = (g2, αi, βi,1, . . . , βi,q)) = (g2, g
xi
2 , g

yi,1
2 , . . . , g

yi,1q
2)

v IssueCred(m1, . . . ,mq, φ) → (σ): Credentials issuance
is composed of three algorithms:
v PrepareBlindSign(m1, . . . ,mq, φ) → (d,Λ, φ): The

users generate an El-Gamal key-pair (d, γ = gd1); pick
a random o ∈ Fp compute the commitment cm and the
group element h ∈ G1 as follows:

cm = go1

q∏

j=1

h
mj

j and h = H(cm)

Pick at random (k1, . . . , kq) ∈ Fqp and compute an El-
Gamal encryption of each mj for ∀j ∈ [1, . . . , q] as
below:

cj = Enc(hmj) = (g
kj
1 , γ

kjhmj)

Output (d,Λ = (γ, cm, cj , πs), φ) ∀j ∈ [1, . . . , q], where
πs is defined by:

πs = NIZK{(d,m1, . . . ,mq, o, k1, . . . , kq) : γ = gd1

∧ cm = go1

q∏

j=1

h
mj

j ∧ cj = (g
kj ,
1 γkjhmj)

∧ φ(m1, . . . ,mq) = 1} ∀j ∈ [1, . . . , q]

v BlindSign(sk,Λ, φ) → (σ̃i): The authority i parses
Λ = (γ, cm, cj , πs) and cj = (aj , bj) ∀j ∈ [1, . . . , q], and
ski = (x, y1, . . . , yq). Recompute h = H(cm). Verify the
proof πs using γ, cm and φ. If the proof is invalid, output
⊥ and stop the protocol; otherwise output σ̃i = (h, c̃),
where c̃ is defined as below:

c̃ =

q∏

j=1

a
yj
j , h

x

q∏

j=1

b
yj
j

v Unblind(σ̃i, d) → (σi): The users parse σ̃i = (h, c̃) and
c̃ = (ã, b̃); compute σi = (h, b̃(ã)−d). Output σi.

v AggCred(σ1, . . . , σt) → (σ): Parse each σi as (h, si) for
i ∈ [1, . . . , t]. Output (h,

∏t
i=1 s

li
i), where:

li =

t∏

i=1,j 6=i

(0− j)

t∏

i=1,sj 6=i

(i− j)

−1

mod p

v ProveCred(vk,m1, . . . ,mq, σ, φ
′) → (σ′,Θ, φ′): Parse

σ = (h, s) and vk = (g2, α, β1, . . . , βq). Pick at random
r′, r ∈ F2

q; set σ′ = (h′, s′) = (hr
′
, sr

′
), and build κ and ν

as below:

κ = α

q∏

j=1

β
mj

j gr2 and ν = (h′)
r

Output (Θ = (κ, ν, σ′, πv), φ
′), where πv is:

πv = NIZK{(m1, . . . ,mq, r) : κ = α

q∏

j=1

β
mj

j gr2

∧ ν = (h′)
r ∧ φ(m1, . . . ,mq) = 1}

v VerifyCred(vk,Θ, φ′) → (true/false): Parse
Θ = (κ, ν, σ′, πv) and σ′ = (h′, s′); verify πv using
vk and φ′; Output true if the proof verifies, h′ 6= 1 and
e(h′, κ) = e(s′ν, g2); otherwise output false.

APPENDIX C
ETHEREUM TUMBLER

We extend the example of the tumbler application described
in Section V-A to the Ethereum version of the Coconut library,
with a few modifications to reduce the gas costs.

Instead of having v (the number of coins) as an attribute,
which would increase the number of elliptic curve multipica-
tions required to verify the credentials, we allow for a fixed
number of instances of Coconut to be setup for different
denominations for v. The Tumbler has a Deposit method,
where users deposit Ether into the contract, and then send
an issuance request to authorities on one private attribute:
addr||s, where addr is the destination address of the merchant,
and s is a randomly generated sequence number (1). It is
necessary for addr to be a part of the attribute because once the
attribute is revealed, the credential can be spent by anyone with
knowledge of the attribute (including any peers monitoring the
blockchain for transactions), therefore the credential must be
bounded to a specific recipient address before it is revealed.
This issuance request is signed by the Ethereum address that
deposited the Ether into the smart contract, as proof that the
request is associated with a valid deposit, and sent to the
authorities (2). As addr and s will be both revealed at the
same time when withdrawing the token, we concatenate these
in one attribute to save on elliptic curve operations. Users
aggregate the credentials issued by the authorities (3). The
resulting token can then be passed to the Withdraw function,
where the withdrawer reveals addr and s (4). As usual, the
contract maintains a map of s values associated with tokens
that have already been withdrawn to prevent double-spending.
After checking that the token’s credentials verifies and that
it has not already been spent, the contract sends v to the
Ethereum destination address addr (5).

15

