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In this work we present an election with verifier input of size O(L+M+N)

• Do so by using controlled-malleable zero-knowledge proofs [CKLM12]

• Define compact threshold decryption (like compactly verifiable shuffle) and 
a notion of vote privacy in an election

• Give efficient instantiations of shuffle and threshold decryption schemes 
based on Decision Linear [BBS04] and two static assumptions [GL07]
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Example: take a proof π1 that b1 is a bit and a proof π2 that b2 is a bit, and 
“maul” them somehow to get a proof that b1⋅b2 is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm 
Eval that on input (T,{xi,πi}), outputs a proof π for T({xi})

• E.g., T = ×, xi = “bi is a bit”

Can define zero knowledge in the usual way as long as proofs are malleable 
only with respect to operations under which the language is closed

But how to define a strong notion of soundness like extractability?
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previously queried instance and a transformation in T from that instance to the 
new one (validly transformed proof)

A bit more formally: from (x,π) the extractor outputs (w,x′,T) such that either (1) 
(x,w)∈R or (2) x′ was queried (to simulator) and x = T(x′) for T∈T

We call the proof CM-SSE (controlled malleable simulation sound extractable) if 
no PPT adversary A can violate these two conditions

If a proof is zero knowledge, CM-SSE, and strongly derivation private, then we 
call it a cm-NIZK

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

7
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π(2)=Eval(T2,π) π(M)=Eval(Tk,π(M-1))
T2=(φ2,R2,sk2) TM=(φM,RM,skM)

Initial mix server still outputs a fresh proof π, but now subsequent servers 
“maul” this proof using permutation φi, re-randomization Ri, and secret key ski

We call this shuffle compactly verifiable, as the last proof π(M) can now be used 
to verify the correctness of the whole shuffle (under an appropriate definition)

So if there are L ciphertexts and M servers, proof size can be O(L+M)
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sec ret k eyC=Enc(pk,m) s1 s2 s3

KeyGen
Enc

ShareDec
(ShareProve)

ShareVerify

m

Formed with ShareDec(C,s1)

Shares contain proof of correctness

Servers can decrypt in any order; not fixed

Once again, final proof π(N) suffices for whole decryption, 
meaning total proof size can again be O(L+N) instead of O(LN) 
(again, under an appropriate definition)

π(N)
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KeyGen(crs): α,β ← Fp; f = gα, h = gβ; output sk = (α,β) and pk = (f,h)

Enc(crs,pk,M): r,s ← Fp; u = fr, v = hs, w = gr+sM; return (u,v,w)

Dec(crs,sk,(u,v,w)): return u-1/αv-1/βw



Part 1: Compact verifiable shuffle

12



Part 1: Compact verifiable shuffle

12

Our concrete shuffle is based on the Groth-Lu shuffle [GL07]



Part 1: Compact verifiable shuffle

12

Our concrete shuffle is based on the Groth-Lu shuffle [GL07]

• CRS of size O(M), proofs of size O(L) (but M of them)

• Based on static pairing-based assumptions



Part 1: Compact verifiable shuffle

12

Our concrete shuffle is based on the Groth-Lu shuffle [GL07]

• CRS of size O(M), proofs of size O(L) (but M of them)

• Based on static pairing-based assumptions

Basically, alter their proofs and make them malleable (i.e., show they satisfy 
CM-friendliness)



Part 1: Compact verifiable shuffle

12

Our concrete shuffle is based on the Groth-Lu shuffle [GL07]

• CRS of size O(M), proofs of size O(L) (but M of them)

• Based on static pairing-based assumptions

Basically, alter their proofs and make them malleable (i.e., show they satisfy 
CM-friendliness)

End up with CRS of size O(M), proofs of size O(L+M) (improvement over 
[CKLM12], which had constant-sized CRS but proofs of size O(L2+M))
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To split BBS decryption key sk = (α,β), just pick α1,β1,...,αN-1,βN-1 ← Fp and set 
αN = -1/α - ∑ αi and βN = -1/β - ∑ βi; then α1 + ... + αN = -1/α and β1 + ... + βN = 
-1/β

Observe that for c = (u,v,w) = Enc(pk,m):

w ∏ uαj⋅vβj = uα1+...+αk⋅vβ1+...+βk⋅w 

             = u-1/α⋅v-1/βw 

             = m

Also want verification key vk = (Com(sk1)=(Com(α1),Com(β1)),...,Com(skN))       
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So say decrypter with skj = (αj,βj) gets share (s,I,π)

• First check ShareVerify(s,I,π)

• Then compute sj = uαj⋅vβj (initial decrypter does uαkvβkw)

• Compute vkc = ∏i∈I vki

• Compute s′ = s⋅sj and  π′ ← Eval(crs,T,(vkc,c,s),π) for T = (sj,gαj,gβj)

• Output (s′, I∪{j}, π′)

partial
decryption participants

proof of correct
partial decryption

}

“the participants represented in 
vkc have correctly partially decrypted 

c to produce s”

(1) folds sj into s
(2) folds commitments into vkc
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Phase 1: users encrypt votes to cast ballots

Set up KeyGen for BBS encryption, vk and crs for threshold decryption proofs, 
crs for shuffle proofs

For voter i, bi = (ci=BBSEnc(pk,vi),πi=PoK(ci,vi))

The vk for threshold decryption is size O(N); for shuffles the crs is size O(M)
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B2
B3

B4

B5

Phase 2: shuffle (permute and re-randomize) the ballots

Resulting proof from cumulative threshold decryption is O(L+N), so total verifier 
input size? O(M) + O(N) + O(L+M) + O(L+N) = O(L+M+N)

Also show this satisfies notion of vote privacy for elections
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The notion of compact threshold decryption allows for proofs of size O(L+N)

This means, theoretically, that election verification size can be O(L+M+N)

Provided a concrete election meeting this bound

Full version is online at eprint.iacr.org/2012/697

Conclusions and open problems

Thanks!
Any questions?
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