Verifiable Elections That Scale for Free

Melissa Chase (MSR Redmond)
Markulf Kohlweiss (MSR Cambridge)
Anna Lysyanskaya (Brown University)
Sarah Meiklejohn (UC San Diego)

10,000-foot view of cryptographic voting

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Y
V1
9

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Y o
So—»
9

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Y o
ﬁh —> D jgcz
)

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V) o
ﬁh—)m ﬁ@—» o)
2

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ES’CQ—) b> V33— D3 %4 > D4 Vs> D5

2 < 9

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 »ﬁ\ig—) bo V33— D3 jﬁ'\z > D4 Vs> D5

7

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 »ﬁ\ig—) bo V33— D3 jﬁ'\z > D4 Vs> D5

7

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ﬁig—) b> V33— D3 @fh > D4 Vs> D5

2 < 9

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ﬁig—) b> V33— D3)ﬁfh > D4 Vs> D5

2 < 9

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —

b4—
D5 —> ':':':

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ﬁig—) b> V33— D3)ﬁCLl > D4 Vs> D5

2 < 9

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ﬁig—) b> V33— D3)ﬁCLl > D4 Vs> D5

2 < 9

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ﬁig—) b> V33— D3)ﬁCLl > D4 Vs> D5

2 < 9

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ﬁig—) b> V33— D3)ﬁCLl > D4 Vs> D5

2 < 9

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ﬁig—) bo V33— D3 jﬁ'\z > D4 Vs> D5

2 2 9

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ﬁig—) b> V33— D3 @fh > D4 Vs> D5

2 < 9

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ﬁig—) b> V33— D3)ﬁfh > D4 Vs> D5

2 < 9

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ﬁig—) b> V33— D3)ﬁfh > D4 Vs> D5

2 < 9

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ﬁig—) b> V33— D3 @fh > D4 Vs> D5

D

7 D

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Vi—> b ﬁ@—»bz va—> b 2§V4—>b4
7 9

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

Phase 3: threshold decrypt the shuffled ballots

V5= D5
2

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ES’CQ—) b> V33— D3 %4 > D4 Vs> D5

D

7 D

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ES’CQ—) b> V33— D3 %4 > D4 Vs> D5

D

7 D

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

))) s
j%/1—>b1 2@@—’ bo ﬁ/3—> b3 %4_’ b4 ﬁ%—’ s
2))

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 ES’CQ—) b> V33— D3 %4 > D4 Vs> D5

D

7 D

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

V{i—> D1 jﬁ’;g—) b> V33— D3 jﬁfa > D4 Vs> D5

D

7 D

Phase 2: shuffle (permute and re-randomize) the ballots

bo—
D3 —>
b4—
D5 —>

Verifiable elections [Ben87,NeffO1,...,GLO7]

Verifiable elections [Ben87,NeffO1,...,GLO7]

If we want to make this verifiable, meaning anyone can check that things went
as they should, then one solution is to just add proofs everywhere

Verifiable elections [Ben87,NeffO1,...,GLO7]

If we want to make this verifiable, meaning anyone can check that things went
as they should, then one solution is to just add proofs everywhere

Verifiable elections [Ben87,NeffO1,...,GLO7]

If we want to make this verifiable, meaning anyone can check that things went
as they should, then one solution is to just add proofs everywhere

 — B
B>

B3

—T5 |als O)E
" Bs

|

TTMm

Then to check that election was fair, need to verify each 1 separately (for non-
interactive solution; for interactive have [Abe98,FI07])

Verifiable elections [Ben87,NeffO1,...,GLO7]

If we want to make this verifiable, meaning anyone can check that things went
as they should, then one solution is to just add proofs everywhere

B
B>

B3

—T5 |als O)E
" Bs

|

TTMm

Then to check that election was fair, need to verify each m; separately (for non-
interactive solution; for interactive have [Abe98,FI07])

This means verifier input is of size O(LM + LN)
(L = # voters, M = # shufflers, N = # decrypters)

Verifiable elections [Ben87,NeffO1,...,GLO7]

If we want to make this verifiable, meaning anyone can check that things went
as they should, then one solution is to just add proofs everywhere

 — B
B>

B3

—T5 |als O)E
" Bs

l l M proofs of size O(L) l

T+ T2 for shuffle M

Then to check that election was fair, need to verify each 1 separately (for non-
interactive solution; for interactive have JAbe98,FI07])

This means verifier input is of size O(LM + LN)
(L = # voters, M = # shufflers, N = # decrypters)

Verifiable elections [Ben87,NeffO1,...,GLO7]

If we want to make this verifiable, meaning anyone can check that things went
as they should, then one solution is to just add proofs everywhere

B+
Bo

Bs

e Bs

l l M proofs of size O(L) l

T+ T2 for shuffle M

Then to check that election was fair, need to verify each 1 separately (for non-
interactive solution; for interactive have JAbe98,FI07])

N proofs of size O(L)
“ fol

This means verifier input is of size O(LM + LN) or threshold decryption

(L = # voters, M = # shufflers, N = # decrypters)

Our contributions

Our contributions

In this work we present an election with verifier input of size O(L+M+N)

Our contributions

In this work we present an election with verifier input of size O(L+M+N)

e Do so by using controlled-malleable zero-knowledge proofs [CKLM12]

Our contributions

In this work we present an election with verifier input of size O(L+M+N)

e Do so by using controlled-malleable zero-knowledge proofs [CKLM12]

e Define compact threshold decryption (like compactly verifiable shuffle) and
a notion of vote privacy in an election

Our contributions

In this work we present an election with verifier input of size O(L+M+N)

e Do so by using controlled-malleable zero-knowledge proofs [CKLM12]

e Define compact threshold decryption (like compactly verifiable shuffle) and
a notion of vote privacy in an election

e Give efficient instantiations of shuffle and threshold decryption schemes
based on Decision Linear [BBS04] and two static assumptions [GLO7]

Outline

Outline

Definitions

Outline

Definitions

Shuffling and decrypting

Outline

Definitions

Shuffling and decrypting

A voting scheme

Outline

Definitions

Shuffling and decrypting

A voting scheme

Conclusions

Outline

Definitions
Malleable proofs [CKLM12]
Compact shuffles [CKLM12]
Threshold decryption

Shuffling and decrypting

A voting scheme

Conclusions

Malleability for proofs [CKLM12]

Malleability for proofs [CKLM12]

Example: take a proof 111 that b+ is a bit and a proof 12 that b is a bit, and
“maul” them somehow to get a proof that b1-b2 is a bit

Malleability for proofs [CKLM12]

Example: take a proof 111 that b+ is a bit and a proof 12 that b is a bit, and
“maul” them somehow to get a proof that b1-b2 is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm
Eval that on input (T,{x;,m}), outputs a proof 1t for T({x})

Malleability for proofs [CKLM12]

Example: take a proof 111 that b+ is a bit and a proof 12 that b is a bit, and
“maul” them somehow to get a proof that b1-b2 is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm
Eval that on input (T,{x;,m}), outputs a proof 1t for T({x})

e E.g., T =x, X = “biis a bit”

Malleability for proofs [CKLM12]

Example: take a proof 111 that b+ is a bit and a proof 12 that b is a bit, and
“maul” them somehow to get a proof that b1-b2 is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm
Eval that on input (T,{x;,m}), outputs a proof 1t for T({x})

e E.g., T =x, X = “biis a bit”

Can define zero knowledge in the usual way as long as proofs are malleable
only with respect to operations under which the language is closed

Malleability for proofs [CKLM12]

Example: take a proof 111 that b+ is a bit and a proof 12 that b is a bit, and
“maul” them somehow to get a proof that b1-b2 is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm
Eval that on input (T,{x;,m}), outputs a proof 1t for T({x})

e E.g., T =x, X = “biis a bit”

Can define zero knowledge in the usual way as long as proofs are malleable
only with respect to operations under which the language is closed

But how to define a strong notion of soundness like extractability?

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Consider an allowable set of transformations J

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Consider an allowable set of transformations J

High-level idea: extractor can pull out either a witness (fresh proof), or a
previously queried instance and a transformation in J from that instance to the
new one (validly transformed proof)

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Consider an allowable set of transformations J

High-level idea: extractor can pull out either a witness (fresh proof), or a
previously queried instance and a transformation in J from that instance to the
new one (validly transformed proof)

A bit more formally: from (x,m1) the extractor outputs (w,x’,T) such that either (1)
(x,w)eR or (2) x” was queried (to simulator) and x = T(x") for TedJ

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Consider an allowable set of transformations J

High-level idea: extractor can pull out either a witness (fresh proof), or a
previously queried instance and a transformation in J from that instance to the
new one (validly transformed proof)

A bit more formally: from (x,m1) the extractor outputs (w,x’,T) such that either (1)
(x,w)eR or (2) x” was queried (to simulator) and x = T(x") for TedJ

We call the proof CM-SSE (controlled malleable simulation sound extractable) if
no PPT adversary A can violate these two conditions

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Consider an allowable set of transformations J

High-level idea: extractor can pull out either a witness (fresh proof), or a
previously queried instance and a transformation in J from that instance to the
new one (validly transformed proof)

A bit more formally: from (x,m1) the extractor outputs (w,x’,T) such that either (1)
(x,w)eR or (2) x” was queried (to simulator) and x = T(x") for TedJ

We call the proof CM-SSE (controlled malleable simulation sound extractable) if
no PPT adversary A can violate these two conditions

If a proof is zero knowledge, CM-SSE, and strongly derivation private, then we
call it a cm-NIZK \(”ke function

privacy for homomorphic
encryption)

Compactly verifiable shuffles [CKLM12]

Dr— | |
bo—— '
b3—

4—m—

bs—— 3

Compactly verifiable shuffles [CKLM12]

r— B1
B>

Bs

05 | =
el Bs

Initial mix server still outputs a fresh proof 1, but now subsequent servers
“maul” this proof using permutation @i, re-randomization Ri, and secret key ski

Compactly verifiable shuffles [CKLM12]

r— B1
B>

Bs

05 | =
el Bs

Initial mix server still outputs a fresh proof 1, but now subsequent servers
“maul” this proof using permutation @i, re-randomization Ri, and secret key ski

Compactly verifiable shuffles [CKLM12]

bo—
b3—
4—m—
b5—— : lS e

nm —— T Eval(l'z,)

Initial mix server still outputs a fresh proof 1, but now subsequent servers
“maul” this proof using permutation i, re-randomization Ri, and secret key sk

Compactly verifiable shuffles [CKLM12]

b— | | B-
bo— B>
b3—— Bs
b4—m B4
bs—o :! lS e Bs

nm —— T Eval(l'z, mn)—>

Initial mix server still outputs a fresh proof 1, but now subsequent servers
“maul” this proof using permutation i, re-randomization Ri, and secret key sk

Compactly verifiable shuffles [CKLM12]

bo—
b3—
4—m—
bs———

l sz ((Pz,Rz,Skz)
n ——n¥=Eval(Tz,nm)——

Initial mix server still outputs a fresh proof 1, but now subsequent servers
“maul” this proof using permutation i, re-randomization Ri, and secret key sk

Compactly verifiable shuffles [CKLM12]

bo—
b3—

b4—m
bs—> "

n —— n@=Eval(T2,n)——nM=

Initial mix server still outputs a fresh proof 1, but now subsequent servers
“maul” this proof using permutation i, re-randomization Ri, and secret key sk

We call this shuffle compactly verifiable, as the last proof ™ can now be used
to verify the correctness of the whole shuffle (under an appropriate definition)

Compactly verifiable shuffles [CKLM12]

b3—

D4g——
bs——— Y

n —— n@=Eval(T2,n)——nM=

Initial mix server still outputs a fresh proof 1, but now subsequent servers
“maul” this proof using permutation i, re-randomization Ri, and secret key sk

We call this shuffle compactly verifiable, as the last proof ™ can now be used
to verify the correctness of the whole shuffle (under an appropriate definition)

So if there are L ciphertexts and M servers, proof size can be O(L+M)

Compact threshold decryption

Compact threshold decryption

C=Enc(pk,m)

Compact threshold decryption

C=Enc(pk,m)—

KeyGen
—NC

Compact threshold decryption

C=Enc(pk,m)'%§ :

KeyGen
—NC

Compact threshold decryption

C=Enc(pk,m)'%§ :

KeyGen
—NC

Compact threshold decryption

C=Enc(pk,m)'g§ :

KeyGen
—NC

Compact threshold decryption

C=Enc(pk,m))g§ ~

KeyGen
—NC

Compact threshold decryption

C=Enc(pk,m))g§

Shares contain proof of correctness

Formed with ShareDec(C,s+)

KeyGen

—NC

ShareDec

(Share

Prove)

Compact threshold decryption

C=Enc(pk,m))g§ a5

Shares contain proof of correctness

Formed with ShareDec(C,s1)

KeyGen
—NC
ShareDec
(ShareProve)
ShareVerify

Compact threshold decryption

C=Enc(pk,m))g§ a5

Shares contain proof of correctness

Formed with ShareDec(C,s1)

KeyGen
—NC
ShareDec
(ShareProve)
ShareVerify

Compact threshold decryption

C=Enc(pk,m))g§ a5

Shares contain proof of correctness

Formed with ShareDec(C,s1)

KeyGen
—NC
ShareDec
(ShareProve)
ShareVerify

Compact threshold decryption

C=Enc(pk,m))g§ a5

Shares contain proof of correctness

Formed with ShareDec(C,s+)

KeyGen
—NC
ShareDec
(ShareProve)
ShareVerify

Compact threshold decryption

C=Enc(pk,m)A%§

Shares contain proof of correctness

Formed with ShareDec(C,s+)

Servers can decrypt in any order; not fixed

KeyGen
—NC
ShareDec
(ShareProve)
ShareVerify

Compact threshold decryption

C=Enc(pk,m)—@

Shares contain proof of correctness

Formed with ShareDec(C,s+)

Servers can decrypt in any order; not fixed

KeyGen

Once again, final proof ™) suffices for whole decryption, EﬂC
meaning total proof size can again be O(L+N) instead of O(LN) ShareDec

(again, under an appropriate definition)
(ShareProve)

ShareVerify

Outline

Definitions

Shuffling and decrypting

A compact verifiable shuffle
Threshold decryption

A voting scheme

Conclusions

10

Preliminary:

B3S encryption |

B3S04]

11

Preliminary:

3

B3S encryption |

53BS04]

Setup: generate a symmetric prime-order bilinear group (p,G,Gr,e,9)

11

Preliminary: BBS encryption [BBS04]

Setup: generate a symmetric prime-order bilinear group (p,G,Gr,e,9)

KeyGen(crs): o, « Fp; f = g%, h = gf; output sk = («,B) and pk = (f,h)

Preliminary: BBS encryption [BBS04]

Setup: generate a symmetric prime-order bilinear group (p,G,Gr,e,9)
KeyGen(crs): o, « Fp; f = g%, h = gf; output sk = («,B) and pk = (f,h)

Enc(crs,pk,M): r,s « Fp; u =f, v=hs, w = g*+sM; return (u,v,w)

Preliminary: BBS encryption [BBS04]

Setup: generate a symmetric prime-order bilinear group (p,G,Gr,e,9)
KeyGen(crs): o, « Fp; f = g%, h = gf; output sk = («,B) and pk = (f,h)
Enc(crs,pk,M): r,s « Fp; u =f, v=hs, w = g*+sM; return (u,v,w)

Dec(crs,sk,(u,v,w)): return u-oy-1/By

11

Part 1: Compact verifiable shuffle

12

Part 1: Compact verifiable shuffle

Our concrete shuffle is based on the Groth-Lu shuffle [GLO7]

12

Part 1: Compact verifiable shuffle

Our concrete shuffle is based on the Groth-Lu shuffle [GLO7]

e CRS of size O(M), proofs of size O(L) (but M of them)

e Based on static pairing-based assumptions

12

Part 1: Compact verifiable shuffle

Our concrete shuffle is based on the Groth-Lu shuffle [GLO7]

e CRS of size O(M), proofs of size O(L) (but M of them)

e Based on static pairing-based assumptions

Basically, alter their proofs and make them malleable (i.e., show they satisfy
CM-friendliness)

12

Part 1: Compact verifiable shuffle

Our concrete shuffle is based on the Groth-Lu shuffle [GLO7]

e CRS of size O(M), proofs of size O(L) (but M of them)

e Based on static pairing-based assumptions

Basically, alter their proofs and make them malleable (i.e., show they satisfy
CM-friendliness)

End up with CRS of size O(M), proofs of size O(L+M) (improvement over
[CKLM12], which had constant-sized CRS but proofs of size O(L?+M))

12

Part 2: Compact threshold decryption (KeyGen)

13

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk = (a,B), just pick o1,B1,...,0N-1,Bn-1 + Fp and set
on=-1/x->aand Bn=-1/B-) Bi;then o1 + ... + an=-1/x and B1 + ... + Pn =
-1/B

13

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk = (a,B), just pick o1,B1,...,0N-1,Bn-1 + Fp and set
on=-1/x->aand Bn=-1/B-) Bi;then o1 + ... + an=-1/x and B1 + ... + Pn =
-1/B

13

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk = (a,B), just pick o1,B1,...,0N-1,Bn-1 + Fp and set
on=-1/x->aand Bn=-1/B-) Bi;then o1 + ... + an=-1/x and B1 + ... + Pn =
-1/B

13

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk = (a,B), just pick o1,B1,...,0N-1,Bn-1 + Fp and set
on=-1/x->aand Bn=-1/B-) Bi;then o1 + ... + an=-1/x and B1 + ... + Pn =
-1/B

13

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk = (a,B), just pick o1,B1,...,0N-1,Bn-1 + Fp and set
on=-1/x->aand Bn=-1/B-) Bi;then o1 + ... + an=-1/x and B1 + ... + Pn =

-1/8 v
TF

=

|

Observe that for ¢ = (u,v,w) = Enc(pk,m): @

—

13

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk = (a,B), just pick o1,B1,...,0N-1,Bn-1 + Fp and set
on=-1/x->aand Bn=-1/B-) Bi;then o1 + ... + an=-1/x and B1 + ... + Pn =

-1/8 v
TF

=

|

Observe that for ¢ = (u,v,w) = Enc(pk,m): @

. |‘| Uu%i-vBi = yXt1++ok. yB1+..+Bk.

—

— u-1/0(V-1/BW

13

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk = (a,B), just pick o1,B1,...,0N-1,Bn-1 + Fp and set
on=-1/x->aand Bn=-1/B-) Bi;then o1 + ... + an=-1/x and B1 + ... + Pn =

-1/8 v
TF

=

|

Observe that for ¢ = (u,v,w) = Enc(pk,m): @

. |‘| Uu%i-vBi = yXt1++ok. yB1+..+Bk.

—

— u-1/0(V-1/BW

I
3

13

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk = (a,B), just pick o1,B1,...,0N-1,Bn-1 + Fp and set
on=-1/x->aand Bn=-1/B-) Bi;then o1 + ... + an=-1/x and B1 + ... + Pn =

-1/B -
a
Observe that for ¢ = (u,v,w) = Enc(pk,m): @ it

. |‘| Uu%i-vBi = yXt1++ok. yB1+..+Bk.

—_—

— u-1/0(V-1/BW

I
3

Also want verification key vk = (Com(sk1)=(Com(c1),Com(p1)),...,Com(skn))

13

Part 2: Compact threshold decryption (Share

DecC)

14

Part 2: Compact threshold decryption (Share

So say decrypter with sk; = (&;,Bj) gets share (s,l,m)

DecC)

14

Part 2: Compact threshold decryption (Share

So say decrypter with sk; = (&;,Bj) gets share (s,l,m)

partial /

decryption

DecC)

14

Part 2: Compact threshold decryption (Share

So say decrypter with sk; = (&;,Bj) gets share (s,l,m)

partial / R

decryption participants

DecC)

14

Part 2: Compact threshold decryption (Share

So say decrypter with sk; = (&,) gets share (s,l,m) ¥_proof of correct

partial / partial decryption
decryption participants

DecC)

14

Part 2: Compact threshold decryption (Share

So say decrypter with sk; = (&,) gets share (s,l,r) ¥_proof of correct

partial / partial decryption
e First check ShareVerify(s,l,r) 9€CYPUON naricinants

DecC)

14

Part 2: Compact threshold decryption (Share

DecC)

So say decrypter with sk; = (a;,8)) gets share (s,|,m) ¥_proof of correct

partial / partial decryption
e First check ShareVerify(s,l,r) 9€CYPUON naricinants

e Then compute sj = u®-vFi (initial decrypter does u®kvPkw)

14

Part 2: Compact threshold decryption (Share

DecC)

So say decrypter with sk; = (a;,8)) gets share (s,|,m) ¥_proof of correct

partial / partial decryption
e First check ShareVerify(s,l,r) 9€CYPUON naricinants

e Then compute sj = u®-vFi (initial decrypter does u®kvPkw)

e Compute vkc = []iel VKi

14

Part 2: Compact threshold decryption (Share

DecC)

So say decrypter with sk; = (&,) gets share (s,l,r) <_proof of correct

partial / partial decryption
e First check ShareVerify(s,l,r) 9€CYPUON naricinants

e Then compute sj = u®-vFi (initial decrypter does u®kvPkw)

e Compute vkc = []iel VKi

e Compute s’ =s-sjand i’ « Eval(crs,T,(vke,c,s),m) for T = (s;,9%,gP)

14

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with sk; = (a;,8)) gets share (s,|,m) ¥_proof of correct

partial / partial decryption
e First check ShareVerify(s,l,r) 9€CYPUON naricinants

e Then compute sj = u®-vFi (initial decrypter does u®kvPkw)
e Compute vkc = []iel VKi

e Compute s’ =s-sjand i’ « Eval(crs,T,(kaC,C,sJ),n) for T = (sj,g%,g")

~/"

“the participants represented in
vkc have correctly partially decrypted
c to produce s”

14

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with sk; = (a;,8)) gets share (s,|,m) ¥_proof of correct

partial / partial decryption
e First check ShareVerify(s,l,r) 9€CYPUON naricinants

e Then compute sj = u®-vFi (initial decrypter does u®kvPkw)

(1) folds sjinto s
e Compute VKc = [|iel VKi (2) folds commitments into vke

e Compute s’ =s-sjand i’ « Eval(crs,T,(kaC,C,sJ),n) for T = (sj,g%,g")

~/"

“the participants represented in
vkc have correctly partially decrypted
c to produce s”

14

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with sk; = (a;,8)) gets share (s,|,m) ¥_proof of correct

partial / partial decryption
e First check ShareVerify(s,l,r) 9€CYPUON naricinants

e Then compute sj = u®-vFi (initial decrypter does u®kvPkw)

(1) folds sjinto s
e Compute VKc = [|iel VKi (2) folds commitments into vke

e Compute s’ =s-sjand i’ « Eval(crs,T,(kaC,C,sJ),n) for T = (sj,g%,g")

~/"

e Output (s’, lu{j},) “the participants represented in
vkc have correctly partially decrypted
c to produce s”

14

Outline

Definitions

Shuffling and decrypting

A voting scheme

Conclusions

15

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

V11— D1 Vo—> Do V3—> D3 V4> D4 V5= D5
) 2 D

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

¥ ¥ ¥

V1= D Vo—> o V3= D3 V4 > D4 Vs—> b5

Set up KeyGen for BBS encryption, vk and crs for threshold decryption proofs,
crs for shuffle proofs

16

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

¥ ¥ ¥

V1= D Vo—> o V3= D3 V4 > D4 Vs—> b5

Set up KeyGen for BBS encryption, vk and crs for threshold decryption proofs,
crs for shuffle proofs

For voter i, bi = (ci=BBSEnc(pk,vi),ti=PoK(ci,v))

16

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

¥))

V1= D Vo—> o V3= D3 V4 > D4 Vs—> b5

Set up KeyGen for BBS encryption, vk and crs for threshold decryption proofs,
crs for shuffle proofs

For voter i, bi = (ci=BBSEnc(pk,vi),ti=PoK(ci,v))

The vk for threshold decryption is size O(N); for shuffles the crs is size O(M)

16

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

>/) P

vi——> b1 Vo—> b Va——> b3 Va—> b4 Vs——> hs
) 2)

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

\Y/ \Y/

Vi—> D1 Vo—> po V3—> D3 Va—> by
9 9
Phase 2: shuffle (permute and re-randomize) the ballots
01—}
Do —>
b3——

D4—>
b5 —> e

17

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

>/) P

Vi—> D1 Vo—> Do V3=—> D3 V4—> D4 V5=——> D5
) 2 9
Phase 2: shuffle (permute and re-randomize) the ballots

bi—1 | | B+
Do — B2
bz— ‘ B3
04 ——> B4
bs—> e Ak Bs

Intermediate mix server j mauls the previous proof using T; = (p;,R;,sk;)

17

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

>/) P

Vi—> D1 Vo—> Do V3=—> D3 V4—> D4 V5=——> D5
) 2 9
Phase 2: shuffle (permute and re-randomize) the ballots

bi—1 | | B+
Do — B2
bz— ‘ B3
04 ——> B4
bs—> e Ak Bs

Intermediate mix server j mauls the previous proof using T; = (p;,R;,sk;)

Resulting proof at the end is of size O(L+M)

17

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

\Y/ \Y/

Vi—> D1 Vo—> po V3—> D3 Va—> by
9 9
Phase 2: shuffle (permute and re-randomize) the ballots
01—}
Do —>
b3——

D4—>
b5 —> e

18

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

\'}) {}

Vi—> D1 Vo—> o V3=—> D3 V4—> D4 V5=——> D5
) 2 9
Phase 2: shuffle (permute and re-randomize) the ballots

D1—>1 | B
Do — B2
bz— B3
04 ——> B4
bs——> Bs

18

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

\'}) {}

Vi—> D1 Vo—> Do V3=—> D3 V4—> D4 V5=——> D5
) 2 9
Phase 2: shuffle (permute and re-randomize) the ballots

D1—>1 | B
Do — B2
bz— B3
04 ——> B4
bs——> Bs

Resulting proof from cumulative threshold Odecryption iIs O(L+N), so total verifier
input size? O(M) + O(N) + O(L+M) + O(L+N) = O(L+M+N)

18

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

\'}) {}

Vi—> D1 Vo—> Do V3=—> D3 V4—> D4 V5=——> D5
) 2 9
Phase 2: shuffle (permute and re-randomize) the ballots

Dr—>T | B
Do — B2
bz— B3
04 ——> B4
bs——> Bs

Resulting proof from cumulative threshold .decryption iIs O(L+N), so total verifier
input size? O(M) + O(N) + O(L+M) + O(L+N) = O(L+M+N)

Also show this satisfies notion of vote privacy for elections
18

Outline

Definitions

Shuffling and decrypting

A voting scheme

Conclusions

19

Conclusions and open problems

20

Conclusions and open problems

The notion of compact threshold decryption allows for proofs of size O(L+N)

20

Conclusions and open problems

The notion of compact threshold decryption allows for proofs of size O(L+N)

This means, theoretically, that election verification size can be O(L+M+N)

20

Conclusions and open problems

The notion of compact threshold decryption allows for proofs of size O(L+N)

This means, theoretically, that election verification size can be O(L+M+N)

Provided a concrete election meeting this bound

20

Conclusions and open problems

The notion of compact threshold decryption allows for proofs of size O(L+N)

This means, theoretically, that election verification size can be O(L+M+N)

Provided a concrete election meeting this bound

Full version is online at eprint.iacr.org/2012/697

20

Conclusions and open problems

The notion of compact threshold decryption allows for proofs of size O(L+N)

This means, theoretically, that election verification size can be O(L+M+N)

Provided a concrete election meeting this bound

Full version is online at eprint.iacr.org/2012/697

Thanks!
Any questions?

20

Regular verifiable threshold decryption [SG98]

21

Regular verifiable threshold decryption [SG98]

C=Enc(pk,m)

21

Regular verifiable threshold decryption [SG98]

-
'

—
LA
LA
« e

%‘g ':-Z':' :

C=Enc(pk,m)

ik

21

Regular verifiable threshold decryption [SG98]

-
'

—
LA
LA
« e

%‘g ':i':' :

C=Enc(pk,m)

KeyGen

ik

21

Regular verifiable threshold decryption [SG98]

C=Enc(pk,m)

Formed with KeyGen

KeyGen

JEDTae

21

Regular verifiable threshold decryption [SG98]

C=Enc(pk,m)

Formed with KeyGen

KeyGen
—NC

JEDTae

21

Regular verifiable threshold decryption [SG98]

N\
SESE

C=Enc(pk,m)

/

Formed with KeyGen

KeyGen
—NC

21

Regular verifiable threshold decryption [SG98]

N\
SES

C=Enc(pk,m)

/

Formed with KeyGen

KeyGen
—NC

21

Regular verifiable threshold decryption [SG98]

C=Enc(pk,m)

Formed with KeyGen

KeyGen

:::Formed with ShareDec(C) —NC
ShareDec

21

Regular verifiable threshold decryption [SG98]

C=Enc(pk,m
(Pk,m)__
Formed with KeyGen KeyGeﬂ
:;:Formed with ShareDec(C) —NC
ShareDec

21

Regular verifiable threshold decryption [SG98]

N\
ENEY

C=Enc(pk,m
(Pk,m)__
Formed with KeyGen @ ! KeyGeﬂ
:;:Formed with ShareDec(C) —NC
ShareDec
M4 ShareProve

Formed with ShareProve(C,sa)

C=Enc(pk,m)

Formed with KeyGen

'“Formed with ShareDec(C)

T4

Formed with ShareProve(C,sa)

Regular verifiable threshold decryption [SG98]

KeyGen
—NC

ShareDec
ShareProve
ShareVerity

21

C=Enc(pk,m)

Formed with KeyGen

'“Formed with ShareDec(C)

T4

Formed with ShareProve(C,sa)

Regular verifiable threshold decryption [SG98]

KeyGen
—NC

ShareDec
ShareProve
ShareVerity

21

C=Enc(pk,m)

Formed with KeyGen

T4

Formed with ShareProve(C,sa)

'“Formed with ShareDec(C)

Regular verifiable threshold decryption [SG98]

: 33/yComblne({si})

KeyGen
—NC
ShareDec
ShareProve
ShareVerity
Combine,

Regular verifiable threshold decryption [SG98]

S?)/,Comblne({si})—> m

C=Enc(pk,m)

Formed with KeyGen KeyG en
:;:Formed with ShareDec(C) —NC

ShareDec

ATl ShareProve

Formed with ShareProve(C,s4) Sh areve ,i.:y

Combine,,

