Verifiable Elections That Scale for Free

Melissa Chase (MSR Redmond)
Markulf Kohlweiss (MSR Cambridge) Anna Lysyanskaya (Brown University) Sarah Meiklejohn (UC San Diego)

10,000-foot view of cryptographic voting

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

[^0]
10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots
b_{1}
b_{2}
b_{3}
b_{4}
b_{5}

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

Phase 3: threshold decrypt the shuffled ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

Phase 3: threshold decrypt the shuffled ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

Phase 3: threshold decrypt the shuffled ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

Phase 3: threshold decrypt the shuffled ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

Phase 3: threshold decrypt the shuffled ballots

10,000-foot view of cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

Phase 3: threshold decrypt the shuffled ballots

Verifiable elections [Ben87,Neff01,...,GL07]

Verifiable elections [Ben87,Neff01,...,GL07]

If we want to make this verifiable, meaning anyone can check that things went as they should, then one solution is to just add proofs everywhere

Verifiable elections [Ben87,Neff01,...,GL07]

If we want to make this verifiable, meaning anyone can check that things went as they should, then one solution is to just add proofs everywhere

Verifiable elections [Ben87,Neff01,...,GL07]

If we want to make this verifiable, meaning anyone can check that things went as they should, then one solution is to just add proofs everywhere

Then to check that election was fair, need to verify each π_{i} separately (for noninteractive solution; for interactive have [Abe98,FI07])

Verifiable elections [Ben87,Neff01,...,GLO7]

If we want to make this verifiable, meaning anyone can check that things went as they should, then one solution is to just add proofs everywhere

Then to check that election was fair, need to verify each π_{i} separately (for noninteractive solution; for interactive have [Abe98,FI07])

This means verifier input is of size $\mathrm{O}(\mathrm{LM}+\mathrm{LN})$
($\mathrm{L}=$ \# voters, $\mathrm{M}=$ \# shufflers, $\mathrm{N}=$ \# decrypters)

Verifiable elections [Ben87,Neff01,...,GL07]

If we want to make this verifiable, meaning anyone can check that things went as they should, then one solution is to just add proofs everywhere

Then to check that election was fair, need to verify each π_{i} separately (for noninteractive solution; for interactive have (Abe98,FI07])

This means verifier input is of size $O(L M+L N)$
($\mathrm{L}=$ \# voters, $\mathrm{M}=$ \# shufflers, $\mathrm{N}=\#$ decrypters)

Verifiable elections [Ben87,Neff01,...,GL07]

If we want to make this verifiable, meaning anyone can check that things went as they should, then one solution is to just add proofs everywhere

Then to check that election was fair, need to verify each π_{i} separately (for noninteractive solution; for interactive have (Abe98,FI07])
N proofs of size O(L)
This means verifier input is of size $\mathrm{O}(\mathrm{LM}+\mathrm{LN}) \longleftarrow$ for threshold decryption ($\mathrm{L}=$ \# voters, $\mathrm{M}=$ \# shufflers, $\mathrm{N}=\#$ decrypters)

Our contributions

Our contributions

In this work we present an election with verifier input of size $\mathrm{O}(\mathrm{L}+\mathrm{M}+\mathrm{N})$

Our contributions

In this work we present an election with verifier input of size $\mathrm{O}(\mathrm{L}+\mathrm{M}+\mathrm{N})$

- Do so by using controlled-malleable zero-knowledge proofs [CKLM12]

Our contributions

In this work we present an election with verifier input of size $\mathrm{O}(\mathrm{L}+\mathrm{M}+\mathrm{N})$

- Do so by using controlled-malleable zero-knowledge proofs [CKLM12]
- Define compact threshold decryption (like compactly verifiable shuffle) and a notion of vote privacy in an election

Our contributions

In this work we present an election with verifier input of size $\mathrm{O}(\mathrm{L}+\mathrm{M}+\mathrm{N})$

- Do so by using controlled-malleable zero-knowledge proofs [CKLM12]
- Define compact threshold decryption (like compactly verifiable shuffle) and a notion of vote privacy in an election
- Give efficient instantiations of shuffle and threshold decryption schemes based on Decision Linear [BBS04] and two static assumptions [GL07]

Outline

Outline

Outline

Outline

Outline

Outline

Definitions

Malleable proofs [CKLM12]
Compact shuffles [CKLM12]
Threshold decryption

Shuffling and decrypting

Malleability for proofs [CKLM12]

Malleability for proofs [CKLM12]

Example: take a proof π_{1} that b_{1} is a bit and a proof π_{2} that b_{2} is a bit, and "maul" them somehow to get a proof that $b_{1} \cdot b_{2}$ is a bit

Malleability for proofs [CKLM12]

Example: take a proof π_{1} that b_{1} is a bit and a proof π_{2} that b_{2} is a bit, and "maul" them somehow to get a proof that $\mathrm{b}_{1} \cdot \mathrm{~b}_{2}$ is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm Eval that on input ($\left.\mathrm{T},\left\{\mathrm{x}_{\mathrm{i}}, \pi \mathrm{i}\right\}\right)$, outputs a proof π for $\mathrm{T}\left(\left\{\mathrm{x}_{\mathrm{i}}\right\}\right)$

Malleability for proofs [CKLM12]

Example: take a proof π_{1} that b_{1} is a bit and a proof π_{2} that b_{2} is a bit, and "maul" them somehow to get a proof that $\mathrm{b}_{1} \cdot \mathrm{~b}_{2}$ is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm Eval that on input ($\left.\mathrm{T},\left\{\mathrm{x}_{\mathrm{i}}, \pi \mathrm{i}\right\}\right)$, outputs a proof π for $\mathrm{T}\left(\left\{\mathrm{x}_{\mathrm{i}}\right\}\right)$

- E.g., $T=x, x_{i}=$ " b_{i} is a bit"

Malleability for proofs [CKLM12]

Example: take a proof π_{1} that b_{1} is a bit and a proof π_{2} that b_{2} is a bit, and "maul" them somehow to get a proof that $b_{1} \cdot b_{2}$ is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm Eval that on input ($\left.\mathrm{T},\left\{\mathrm{x}_{\mathrm{i}}, \pi \mathrm{i}\right\}\right)$, outputs a proof π for $\mathrm{T}\left(\left\{\mathrm{x}_{\mathrm{i}}\right\}\right)$

- E.g., $T=x, x_{i}=$ " b_{i} is a bit"

Can define zero knowledge in the usual way as long as proofs are malleable only with respect to operations under which the language is closed

Malleability for proofs [CKLM12]

Example: take a proof π_{1} that b_{1} is a bit and a proof π_{2} that b_{2} is a bit, and "maul" them somehow to get a proof that $\mathrm{b}_{1} \cdot \mathrm{~b}_{2}$ is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm Eval that on input ($\left.\mathrm{T},\left\{\mathrm{x}_{\mathrm{i}}, \pi \mathrm{i}\right\}\right)$, outputs a proof π for $\mathrm{T}\left(\left\{\mathrm{x}_{\mathrm{i}}\right\}\right)$

- E.g., $T=x, x_{i}=$ " b_{i} is a bit"

Can define zero knowledge in the usual way as long as proofs are malleable only with respect to operations under which the language is closed

But how to define a strong notion of soundness like extractability?

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Consider an allowable set of transformations \mathfrak{J}

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Consider an allowable set of transformations \mathfrak{J}

High-level idea: extractor can pull out either a witness (fresh proof), or a previously queried instance and a transformation in \mathfrak{J} from that instance to the new one (validly transformed proof)

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Consider an allowable set of transformations \mathfrak{J}

High-level idea: extractor can pull out either a witness (fresh proof), or a previously queried instance and a transformation in \mathfrak{J} from that instance to the new one (validly transformed proof)

A bit more formally: from (x, π) the extractor outputs ($\mathrm{w}, \mathrm{x}^{\prime}, \mathrm{T}$) such that either (1) $(x, w) \in R$ or (2) x^{\prime} was queried (to simulator) and $x=T\left(x^{\prime}\right)$ for $T \in \mathcal{J}$

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Consider an allowable set of transformations \mathfrak{J}

High-level idea: extractor can pull out either a witness (fresh proof), or a previously queried instance and a transformation in \mathfrak{J} from that instance to the new one (validly transformed proof)

A bit more formally: from (x, π) the extractor outputs ($\mathrm{w}, \mathrm{x}^{\prime}, \mathrm{T}$) such that either (1) $(x, w) \in R$ or (2) x^{\prime} was queried (to simulator) and $x=T\left(x^{\prime}\right)$ for $T \in \mathcal{J}$

We call the proof CM-SSE (controlled malleable simulation sound extractable) if no PPT adversary A can violate these two conditions

Controlled-malleable proofs (cm-NIZKs) [CKLM12]

Consider an allowable set of transformations \mathfrak{J}

High-level idea: extractor can pull out either a witness (fresh proof), or a previously queried instance and a transformation in \mathfrak{J} from that instance to the new one (validly transformed proof)

A bit more formally: from (x, π) the extractor outputs ($\mathrm{w}, \mathrm{x}^{\prime}, \mathrm{T}$) such that either (1) $(x, w) \in R$ or (2) x^{\prime} was queried (to simulator) and $x=T\left(x^{\prime}\right)$ for $T \in \mathcal{J}$

We call the proof CM-SSE (controlled malleable simulation sound extractable) if no PPT adversary A can violate these two conditions

If a proof is zero knowledge, CM-SSE, and strongly derivation private, then we call it a cm-NIZK
(like function privacy for homomorphic encryption)

Compactly verifiable shuffles [CKLM12]

Compactly verifiable shuffles [CKLM12]

Initial mix server still outputs a fresh proof π, but now subsequent servers "maul" this proof using permutation φ_{i}, re-randomization R_{i}, and secret key ski

Compactly verifiable shuffles [CKLM12]

Initial mix server still outputs a fresh proof π, but now subsequent servers "maul" this proof using permutation φ_{i}, re-randomization R_{i}, and secret key ski

Compactly verifiable shuffles [CKLM12]

Initial mix server still outputs a fresh proof π, but now subsequent servers "maul" this proof using permutation φ_{i}, re-randomization R_{i}, and secret key ski

Compactly verifiable shuffles [CKLM12]

Initial mix server still outputs a fresh proof π, but now subsequent servers "maul" this proof using permutation φ_{i}, re-randomization R_{i}, and secret key ski

Compactly verifiable shuffles [CKLM12]

Initial mix server still outputs a fresh proof π, but now subsequent servers "maul" this proof using permutation φ_{i}, re-randomization R_{i}, and secret key ski

Compactly verifiable shuffles [CKLM12]

Initial mix server still outputs a fresh proof π, but now subsequent servers "maul" this proof using permutation φ_{i}, re-randomization R_{i}, and secret key ski

We call this shuffle compactly verifiable, as the last proof $\pi^{(M)}$ can now be used to verify the correctness of the whole shuffle (under an appropriate definition)

Compactly verifiable shuffles [CKLM12]

Initial mix server still outputs a fresh proof π, but now subsequent servers "maul" this proof using permutation φ_{i}, re-randomization R_{i}, and secret key ski

We call this shuffle compactly verifiable, as the last proof $\pi^{(M)}$ can now be used to verify the correctness of the whole shuffle (under an appropriate definition)

So if there are L ciphertexts and M servers, proof size can be $O(L+M)$

Compact threshold decryption

Compact threshold decryption

$\mathrm{C}=E n c(\mathrm{pk}, \mathrm{m})$

Compact threshold decryption

$\mathrm{C}=\mathrm{Enc}(\mathrm{pk}, \mathrm{m}) \rightarrow$

KeyGen
Enc

Compact threshold decryption

KeyGen
Enc

Compact threshold decryption

$\mathrm{C}=E n c(\mathrm{pk}, \mathrm{m}) \rightarrow-\operatorname{sic}$

KeyGen
Enc

Compact threshold decryption

KeyGen
Enc

Compact threshold decryption

KeyGen
Enc

Compact threshold decryption

Shares contain proof of correctness

KeyGen
Enc
ShareDec
(ShareProve)

Compact threshold decryption

Shares contain proof of correctness

KeyGen
Enc
ShareDec
(ShareProve)
ShareVerify.

Compact threshold decryption

Shares contain proof of correctness

KeyGen
Enc
ShareDec
(ShareProve)
ShareVerify.

Compact threshold decryption

Shares contain proof of correctness

KeyGen
Enc
ShareDec
(ShareProve)
ShareVerify.

Compact threshold decryption

Shares contain proof of correctness

KeyGen
Enc
ShareDec
(ShareProve)
ShareVerify,

Compact threshold decryption

Shares contain proof of correctness

Servers can decrypt in any order; not fixed

KeyGen
Enc
ShareDec
(ShareProve)
ShareVerify.

Compact threshold decryption

$\mathrm{C}=\mathrm{Enc}(\mathrm{Ok}, \mathrm{m}) \rightarrow$ sec
Formed with $\operatorname{ShareDec}\left(\mathrm{C}, \mathrm{s}_{1}\right)$
Shares contain proof of correctness

Servers can decrypt in any order; not fixed

Once again, final proof $\pi^{(N)}$ suffices for whole decryption, meaning total proof size can again be $\mathrm{O}(\mathrm{L}+\mathrm{N})$ instead of $\mathrm{O}(\mathrm{LN})$ (again, under an appropriate definition)

KeyGen
Enc
ShareDec
(ShareProve)
ShareVerify.

Outline

Conclusions

Preliminary: BBS encryption [BBS04]

Preliminary: BBS encryption [BBSO4]

Setup: generate a symmetric prime-order bilinear group ($\mathrm{p}, \mathrm{G}, \mathrm{G}, \mathrm{e}, \mathrm{g}$)

Preliminary: BBS encryption [BBS04]

Setup: generate a symmetric prime-order bilinear group ($\mathrm{p}, \mathrm{G}, \mathrm{G}_{\mathrm{T}, \mathrm{e}, \mathrm{g} \text {) }}$

KeyGen(crs): $\alpha, \beta \leftarrow F_{p} ; f=g^{\alpha}, h=g^{\beta}$; output $s k=(\alpha, \beta)$ and $p k=(f, h)$

Preliminary: BBS encryption [BBS04]

Setup: generate a symmetric prime-order bilinear group ($\mathrm{p}, \mathrm{G}, \mathrm{G}_{\mathrm{T}, \mathrm{e}, \mathrm{g} \text {) }}$

KeyGen(crs): $\alpha, \beta \leftarrow \mathrm{F}_{\mathrm{p}} ; \mathrm{f}=\mathrm{g}^{\alpha}, \mathrm{h}=\mathrm{g}^{\beta}$; output $\mathrm{sk}=(\alpha, \beta)$ and $\mathrm{pk}=(\mathrm{f}, \mathrm{h})$

Enc(crs,pk,M): $r, s \leftarrow F_{p} ; u=f^{r}, v=h^{s}, w=g^{r+s} M$; return ($\left.u, v, w\right)$

Preliminary: BBS encryption [BBS04]

Setup: generate a symmetric prime-order bilinear group ($\mathrm{p}, \mathrm{G}, \mathrm{G}_{\mathrm{T}, \mathrm{e}, \mathrm{g} \text {) }}$

KeyGen(crs): $\alpha, \beta \leftarrow \mathrm{F}_{\mathrm{p}} ; \mathrm{f}=\mathrm{g}^{\alpha}, \mathrm{h}=\mathrm{g}^{\beta}$; output $\mathrm{sk}=(\alpha, \beta)$ and $\mathrm{pk}=(\mathrm{f}, \mathrm{h})$

Enc(crs,pk,M): $r, s \leftarrow F_{p} ; u=f^{r}, v=h^{s}, w=g^{r+s} M$; return ($\left.u, v, w\right)$
$\operatorname{Dec}(c r s, s k,(u, v, w)):$ return $u^{-1 / \alpha} v^{-1 / \beta} w$

Part 1: Compact verifiable shuffle

Part 1: Compact verifiable shuffle

Our concrete shuffle is based on the Groth-Lu shuffle [GLO7]

Part 1: Compact verifiable shuffle

Our concrete shuffle is based on the Groth-Lu shuffle [GLO7]

- CRS of size $\mathrm{O}(\mathrm{M})$, proofs of size $\mathrm{O}(\mathrm{L})$ (but M of them)
- Based on static pairing-based assumptions

Part 1: Compact verifiable shuffle

Our concrete shuffle is based on the Groth-Lu shuffle [GLO7]

- CRS of size $\mathrm{O}(\mathrm{M})$, proofs of size $\mathrm{O}(\mathrm{L})$ (but M of them)
- Based on static pairing-based assumptions

Basically, alter their proofs and make them malleable (i.e., show they satisfy CM-friendliness)

Part 1: Compact verifiable shuffle

Our concrete shuffle is based on the Groth-Lu shuffle [GLO7]

- CRS of size $\mathrm{O}(\mathrm{M})$, proofs of size $\mathrm{O}(\mathrm{L})$ (but M of them)
- Based on static pairing-based assumptions

Basically, alter their proofs and make them malleable (i.e., show they satisfy CM-friendliness)

End up with CRS of size $\mathrm{O}(\mathrm{M})$, proofs of size $\mathrm{O}(\mathrm{L}+\mathrm{M})$ (improvement over [CKLM12], which had constant-sized CRS but proofs of size $\mathrm{O}\left(\mathrm{L}^{2}+\mathrm{M}\right)$)

Part 2: Compact threshold decryption (KeyGen)

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk $=(\alpha, \beta)$, just pick $\alpha_{1}, \beta_{1}, \ldots, \alpha_{N-1}, \beta_{N-1} \leftarrow F_{p}$ and set $\alpha_{N}=-1 / \alpha-\sum \alpha_{i}$ and $\beta_{N}=-1 / \beta-\sum \beta_{i}$; then $\alpha_{1}+\ldots+\alpha_{N}=-1 / \alpha$ and $\beta_{1}+\ldots+\beta_{N}=$ $-1 / \beta$

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk $=(\alpha, \beta)$, just pick $\alpha_{1}, \beta_{1}, \ldots, \alpha_{N-1}, \beta_{N-1} \leftarrow F_{p}$ and set $\alpha_{N}=-1 / \alpha-\sum \alpha_{i}$ and $\beta_{N}=-1 / \beta-\sum \beta_{i}$; then $\alpha_{1}+\ldots+\alpha_{N}=-1 / \alpha$ and $\beta_{1}+\ldots+\beta_{N}=$ $-1 / \beta$

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk $=(\alpha, \beta)$, just pick $\alpha_{1}, \beta_{1}, \ldots, \alpha_{N-1}, \beta_{N-1} \leftarrow F_{p}$ and set $\alpha_{N}=-1 / \alpha-\sum \alpha_{i}$ and $\beta_{N}=-1 / \beta-\sum \beta_{i}$; then $\alpha_{1}+\ldots+\alpha_{N}=-1 / \alpha$ and $\beta_{1}+\ldots+\beta_{N}=$ $-1 / \beta$

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk $=(\alpha, \beta)$, just pick $\alpha_{1}, \beta_{1}, \ldots, \alpha_{N-1}, \beta_{N-1} \leftarrow F_{p}$ and set $\alpha_{N}=-1 / \alpha-\sum \alpha_{i}$ and $\beta_{N}=-1 / \beta-\sum \beta_{i}$; then $\alpha_{1}+\ldots+\alpha_{N}=-1 / \alpha$ and $\beta_{1}+\ldots+\beta_{N}=$ $-1 / \beta$

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk $=(\alpha, \beta)$, just pick $\alpha_{1}, \beta_{1}, \ldots, \alpha_{N-1}, \beta_{N-1} \leftarrow F_{p}$ and set $\alpha_{N}=-1 / \alpha-\sum \alpha_{i}$ and $\beta_{N}=-1 / \beta-\sum \beta_{i}$; then $\alpha_{1}+\ldots+\alpha_{N}=-1 / \alpha$ and $\beta_{1}+\ldots+\beta_{N}=$ $-1 / \beta$

Observe that for $\mathrm{c}=(\mathrm{u}, \mathrm{v}, \mathrm{w})=\operatorname{Enc}(\mathrm{pk}, \mathrm{m})$:

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk $=(\alpha, \beta)$, just pick $\alpha_{1}, \beta_{1}, \ldots, \alpha_{N-1}, \beta_{N-1} \leftarrow F_{p}$ and set $\alpha_{N}=-1 / \alpha-\sum \alpha_{i}$ and $\beta_{N}=-1 / \beta-\sum \beta_{i}$; then $\alpha_{1}+\ldots+\alpha_{N}=-1 / \alpha$ and $\beta_{1}+\ldots+\beta_{N}=$ $-1 / \beta$

Observe that for $\mathrm{c}=(\mathrm{u}, \mathrm{v}, \mathrm{w})=\operatorname{Enc}(\mathrm{pk}, \mathrm{m})$:

$s k_{i}=\left(\alpha_{i}, \beta_{i}\right)$

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk $=(\alpha, \beta)$, just pick $\alpha_{1}, \beta_{1}, \ldots, \alpha_{N-1}, \beta_{N-1} \leftarrow F_{p}$ and set $\alpha_{N}=-1 / \alpha-\sum \alpha_{i}$ and $\beta_{N}=-1 / \beta-\sum \beta_{i}$; then $\alpha_{1}+\ldots+\alpha_{N}=-1 / \alpha$ and $\beta_{1}+\ldots+\beta_{N}=$ $-1 / \beta$

Observe that for $\mathrm{c}=(\mathrm{u}, \mathrm{v}, \mathrm{w})=\operatorname{Enc}(\mathrm{pk}, \mathrm{m})$:

$$
s k_{i}=\left(\alpha_{i}, \beta_{i}\right)
$$

$=\mathrm{m}$

Part 2: Compact threshold decryption (KeyGen)

To split BBS decryption key sk $=(\alpha, \beta)$, just pick $\alpha_{1}, \beta_{1}, \ldots, \alpha_{N-1}, \beta_{N-1} \leftarrow F_{p}$ and set $\alpha_{N}=-1 / \alpha-\sum \alpha_{i}$ and $\beta_{N}=-1 / \beta-\sum \beta_{i}$; then $\alpha_{1}+\ldots+\alpha_{N}=-1 / \alpha$ and $\beta_{1}+\ldots+\beta_{N}=$ $-1 / \beta$

Observe that for $\mathrm{c}=(\mathrm{u}, \mathrm{v}, \mathrm{w})=\operatorname{Enc}(\mathrm{pk}, \mathrm{m})$:

$$
w \prod_{u^{\alpha_{j}} \cdot v^{\beta_{j}}}=u^{\alpha_{1}+\ldots+\alpha_{k}} \cdot v^{\beta_{1}+\ldots+\beta_{k}} \cdot w
$$

$$
=u^{-1 / \alpha} \cdot v^{-1 / \beta} w
$$

$$
s k_{i}=\left(\alpha_{i}, \beta_{i}\right)
$$

$$
=\mathrm{m}
$$

Also want verification key vk $=\left(\operatorname{Com}\left(\mathrm{sk}_{1}\right)=\left(\operatorname{Com}\left(\alpha_{1}\right), \operatorname{Com}\left(\beta_{1}\right)\right), \ldots, \operatorname{Com}\left(\mathrm{sk}_{\mathrm{N}}\right)\right)$

Part 2: Compact threshold decryption (ShareDec)

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with $s k_{j}=\left(\alpha_{j}, \beta_{j}\right)$ gets share $(\mathrm{s}, \mathrm{I}, \pi)$

Part 2: Compact threshold decryption (ShareDec)

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with $s k_{j}=\left(\alpha_{j}, \beta_{j}\right)$ gets share $(\mathrm{s}, \mathrm{I}, \pi)$

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with $s k_{j}=\left(\alpha_{j}, \beta_{j}\right)$ gets share (s, I, π) partial decryption $\prod_{\text {participants }}^{\text {proft of correct }}$

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with $s k_{j}=\left(\alpha_{j}, \beta_{j}\right)$ gets share (s, I, π) partial $\overbrace{\text { partial decryption }}^{\text {pecryption }}$

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with $s k_{j}=\left(\alpha_{j}, \beta_{j}\right)$ gets share $(\mathrm{s}, \mathrm{l}, \pi)$ proof of correct

- Then compute $s_{j}=u^{\alpha_{j}} \cdot v^{\beta_{j}}$ (initial decrypter does $u^{\alpha_{k}} v^{\beta_{k}}$ w)

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with $s k_{j}=\left(\alpha_{j}, \beta_{j}\right)$ gets share $(\mathrm{s}, \mathrm{l}, \pi)$ proof of correct

- Then compute $s_{j}=u^{\alpha_{j}} \cdot v^{\beta_{j}}$ (initial decrypter does $u^{\alpha_{k}} v^{\beta_{k}}$ w)
- Compute $\mathrm{vk}_{\mathrm{c}}=\prod_{\mathrm{i} \in \mathrm{I}} \mathrm{Vk}_{\mathrm{i}}$

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with $s k_{j}=\left(\alpha_{j}, \beta_{j}\right)$ gets share (s, I, π) partial $\overbrace{\text { participants }}^{\text {proof of correct }}$

- Then compute $s_{j}=u^{\alpha_{j}} \cdot v^{\beta_{j}}$ (initial decrypter does $\left.u^{\alpha_{k}} v^{\beta_{k}} w\right)$
- Compute $\mathrm{vk}_{\mathrm{c}}=\prod_{\mathrm{i} \in I} \mathrm{vk}_{\mathrm{i}}$
- Compute $s^{\prime}=s \cdot s_{j}$ and $\pi^{\prime} \leftarrow \operatorname{Eval}\left(c r s, T,\left(\mathrm{vk}_{\mathrm{c}}, \mathrm{c}, \mathrm{s}\right), \pi\right)$ for $T=\left(\mathrm{s}_{\mathrm{j}}, \mathrm{g}^{\left.\alpha_{j}, g^{\beta_{j}}\right)}\right.$

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with $s k_{j}=\left(\alpha_{j}, \beta_{j}\right)$ gets share (s, I, π) partial $\varlimsup_{\text {ecryption }}^{\text {partial decryption }}$

- First check ShareVerify (s, I, π) decryption participants
- Then compute $s_{j}=u^{\alpha_{j}} \cdot v^{\beta_{j}}$ (initial decrypter does $u^{\alpha_{k}} v^{\beta_{k}}$ w)
- Compute $\mathrm{vk}_{\mathrm{c}}=\prod_{\mathrm{i} \in I} \mathrm{vk}_{\mathrm{i}}$
- Compute $s^{\prime}=s \cdot s_{j}$ and $\pi^{\prime} \leftarrow \operatorname{Eval}(\mathrm{crs}, \mathrm{T}, \underbrace{\left(\mathrm{vk}_{\mathrm{c}}, \mathrm{C}, \mathrm{s}\right)}_{/}, \pi)$ for $\mathrm{T}=\left(\mathrm{s}_{\left.\mathrm{j}, \mathrm{g}^{\alpha_{j}}, \mathrm{~g}^{\beta_{j}}\right)}\right.$
"the participants represented in $v k_{c}$ have correctly partially decrypted
c to produce s"

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with $s k_{j}=\left(\alpha_{j}, \beta_{j}\right)$ gets share (s, I, π) partial $\varlimsup_{\text {participants }}^{\text {partial decryption }}$

- First check ShareVerify(s, I, π) decryption participants
- Then compute $s_{j}=u^{\alpha_{j}} \cdot v^{\beta_{j}}$ (initial decrypter does $\left.u^{\alpha_{k}} v^{\beta_{k}} w\right)$
- Compute $\mathrm{vk}_{\mathrm{c}}=\prod_{\mathrm{i}} \mathrm{vk} \mathrm{k}_{\mathrm{i}}$
(1) folds s_{j} into s
- Compute $s^{\prime}=s \cdot s_{j}$ and $\pi^{\prime} \leftarrow \operatorname{Eval}(c r s, \underbrace{T}, \underbrace{\left(2 k_{c}, c, s\right)}, \pi)$ for $T^{\prime}=\left(s_{j}, g^{\alpha_{j}}, g^{\beta_{j}}\right)$
"the participants represented in vk_{c} have correctly partially decrypted
c to produce s"

Part 2: Compact threshold decryption (ShareDec)

So say decrypter with $s k_{j}=\left(\alpha_{j}, \beta_{j}\right)$ gets share (s, I, π) partial $\int_{\text {participants }}^{\text {partial decryption }}$

- First check ShareVerify(s, I, π) decryption participants
- Then compute $s_{j}=u^{\alpha_{j}} \cdot v^{\beta_{j}}$ (initial decrypter does $\left.u^{\alpha_{k}} v^{\beta_{k}} w\right)$
- Compute $\mathrm{vk}_{\mathrm{c}}=\prod_{\mathrm{i} \in \mathrm{I}} \mathrm{Vk}_{\mathrm{i}}$
(1) folds s_{j} into s

- Output ($\left.s^{\prime}, ~ I \cup\{j\}, \pi^{\prime}\right)$
vk_{c} have correctly partially decrypted
c to produce s"

Outline

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

Set up KeyGen for BBS encryption, vk and crs for threshold decryption proofs, crs for shuffle proofs

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

Set up KeyGen for BBS encryption, vk and crs for threshold decryption proofs, crs for shuffle proofs

For voter $\mathrm{i}, \mathrm{b}_{\mathrm{i}}=\left(\mathrm{c}_{\mathrm{i}}=\mathrm{BBSEnc}\left(\mathrm{pk}, \mathrm{v}_{\mathrm{i}}\right) \pi_{i}=\operatorname{PoK}\left(\mathrm{c}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)\right)$

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

Set up KeyGen for BBS encryption, vk and crs for threshold decryption proofs, crs for shuffle proofs

For voter $\mathrm{i}, \mathrm{b}_{\mathrm{i}}=\left(\mathrm{c}_{\mathrm{i}}=\mathrm{BBSEnc}\left(\mathrm{pk}, \mathrm{v}_{\mathrm{i}}\right) \pi_{i}=\operatorname{PoK}\left(\mathrm{c}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)\right)$

The vk for threshold decryption is size $\mathrm{O}(\mathrm{N})$; for shuffles the crs is size $\mathrm{O}(\mathrm{M})$

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

Instantiating cryptographic voting

Phase 2: shuffle (permute and re-randomize) the ballots

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

Intermediate mix server j mauls the previous proof using $\mathrm{T}_{\mathrm{j}}=\left(\varphi_{\mathrm{j}}, \mathrm{R}_{\mathrm{j}}, \mathrm{sk}_{\mathrm{j}}\right)$

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

Intermediate mix server j mauls the previous proof using $\mathrm{T}_{\mathrm{j}}=\left(\varphi_{\mathrm{j}}, \mathrm{R}_{\mathrm{j}}, \mathrm{sk}_{\mathrm{j}}\right)$

Resulting proof at the end is of size $\mathrm{O}(\mathrm{L}+\mathrm{M})$

Instantiating cryptographic voting

Phase 2: shuffle (permute and re-randomize) the ballots

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

Phase 3: threshold decrypt the shuffled ballots

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

Phase 3: threshold decrypt the shuffled ballots

Resulting proof from cumulative threshold decryption is $\mathrm{O}(\mathrm{L}+\mathrm{N})$, so total verifier input size? $\mathrm{O}(\mathrm{M})+\mathrm{O}(\mathrm{N})+\mathrm{O}(\mathrm{L}+\mathrm{M})+\mathrm{O}(\mathrm{L}+\mathrm{N})=\mathrm{O}(\mathrm{L}+\mathrm{M}+\mathrm{N})$

Instantiating cryptographic voting

Phase 1: users encrypt votes to cast ballots

Phase 2: shuffle (permute and re-randomize) the ballots

 - !

Phase 3: threshold decrypt the shuffled ballots

Resulting proof from cumulative threshold decryption is $\mathrm{O}(\mathrm{L}+\mathrm{N})$, so total verifier input size? $\mathrm{O}(\mathrm{M})+\mathrm{O}(\mathrm{N})+\mathrm{O}(\mathrm{L}+\mathrm{M})+\mathrm{O}(\mathrm{L}+\mathrm{N})=\mathrm{O}(\mathrm{L}+\mathrm{M}+\mathrm{N})$

Also show this satisfies notion of vote privacy for elections

Outline

Conclusions and open problems

Conclusions and open problems

The notion of compact threshold decryption allows for proofs of size $\mathrm{O}(\mathrm{L}+\mathrm{N})$

Conclusions and open problems

The notion of compact threshold decryption allows for proofs of size $\mathrm{O}(\mathrm{L}+\mathrm{N})$

This means, theoretically, that election verification size can be $\mathrm{O}(\mathrm{L}+\mathrm{M}+\mathrm{N})$

Conclusions and open problems

The notion of compact threshold decryption allows for proofs of size $\mathrm{O}(\mathrm{L}+\mathrm{N})$

This means, theoretically, that election verification size can be $\mathrm{O}(\mathrm{L}+\mathrm{M}+\mathrm{N})$

Provided a concrete election meeting this bound

Conclusions and open problems

The notion of compact threshold decryption allows for proofs of size $\mathrm{O}(\mathrm{L}+\mathrm{N})$

This means, theoretically, that election verification size can be $\mathrm{O}(\mathrm{L}+\mathrm{M}+\mathrm{N})$

Provided a concrete election meeting this bound

Full version is online at eprint.iacr.org/2012/697

Conclusions and open problems

The notion of compact threshold decryption allows for proofs of size $\mathrm{O}(\mathrm{L}+\mathrm{N})$

This means, theoretically, that election verification size can be $\mathrm{O}(\mathrm{L}+\mathrm{M}+\mathrm{N})$

Provided a concrete election meeting this bound

Full version is online at eprint.iacr.org/2012/697

Thanks!
 Any questions?

Regular verifiable threshold decryption [SG98]

Regular verifiable threshold decryption [SG98]

$\mathrm{C}=E n c(\mathrm{pk}, \mathrm{m})$

Regular verifiable threshold decryption [SG98]

C=Enc(pk,m)

Regular verifiable threshold decryption [SG98]

$\mathrm{C}=\mathrm{Enc}(\mathrm{pk}, \mathrm{m})$

KeyGen

Regular verifiable threshold decryption [SG98]

KeyGen

Regular verifiable threshold decryption [SG98]

KeyGen Enc

Regular verifiable threshold decryption [SG98]

KeyGen Enc

Regular verifiable threshold decryption [SG98]

KeyGen Enc

Regular verifiable threshold decryption [SG98]

KeyGen Enc
ShareDec

Regular verifiable threshold decryption [SG98]

KeyGen Enc
ShareDec

Regular verifiable threshold decryption [SG98]

KeyGen Enc ShareDec ShareProve
Formed with ShareProve(C,s4)

Regular verifiable threshold decryption [SG98]

KeyGen
Enc
ShareDec
ShareProve
ShareVerify

Regular verifiable threshold decryption [SG98]

KeyGen Enc
ShareDec
ShareProve
ShareVerify

Regular verifiable threshold decryption [SG98]

Regular verifiable threshold decryption [SG98]

[^0]: b_{1}
 b_{2}
 $\mathrm{~b}_{3}$
 b_{4}
 b_{5}

