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If we want to make this verifiable, meaning anyone can check that things went
as they should, then one solution is to just add proofs everywhere
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T+ T2 for shuffle M

Then to check that election was fair, need to verify each 1 separately (for non-
interactive solution; for interactive have JAbe98,FI07])

N proofs of size O(L)
“ fol

This means verifier input is of size O(LM + LN) or threshold decryption

(L = # voters, M = # shufflers, N = # decrypters)
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Our contributions

In this work we present an election with verifier input of size O(L+M+N)

e Do so by using controlled-malleable zero-knowledge proofs [CKLM12]

e Define compact threshold decryption (like compactly verifiable shuffle) and
a notion of vote privacy in an election

e Give efficient instantiations of shuffle and threshold decryption schemes
based on Decision Linear [BBS04] and two static assumptions [GLO7]
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Example: take a proof 111 that b+ is a bit and a proof 12 that b is a bit, and
“maul” them somehow to get a proof that b1-b2 is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm
Eval that on input (T,{x;,m}), outputs a proof 1t for T({x})

e E.g., T =x, X = “biis a bit”

Can define zero knowledge in the usual way as long as proofs are malleable
only with respect to operations under which the language is closed

But how to define a strong notion of soundness like extractability?
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Consider an allowable set of transformations J

High-level idea: extractor can pull out either a witness (fresh proof), or a
previously queried instance and a transformation in J from that instance to the
new one (validly transformed proof)

A bit more formally: from (x,m1) the extractor outputs (w,x’,T) such that either (1)
(x,w)eR or (2) x” was queried (to simulator) and x = T(x") for TedJ

We call the proof CM-SSE (controlled malleable simulation sound extractable) if
no PPT adversary A can violate these two conditions

If a proof is zero knowledge, CM-SSE, and strongly derivation private, then we
call it a cm-NIZK \(”ke function

privacy for homomorphic
encryption)
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Initial mix server still outputs a fresh proof 1, but now subsequent servers
“maul” this proof using permutation i, re-randomization Ri, and secret key sk

We call this shuffle compactly verifiable, as the last proof ™ can now be used
to verify the correctness of the whole shuffle (under an appropriate definition)

So if there are L ciphertexts and M servers, proof size can be O(L+M)
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Compact threshold decryption

C=Enc(pk,m)—@

Shares contain proof of correctness

Formed with ShareDec(C,s+)

Servers can decrypt in any order; not fixed

KeyGen

Once again, final proof ™) suffices for whole decryption, EﬂC
meaning total proof size can again be O(L+N) instead of O(LN) ShareDec

(again, under an appropriate definition)
(ShareProve)

ShareVerify
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Setup: generate a symmetric prime-order bilinear group (p,G,Gr,e,9)
KeyGen(crs): o, « Fp; f = g%, h = gf; output sk = («,B) and pk = (f,h)
Enc(crs,pk,M): r,s « Fp; u =f, v=hs, w = g*+sM; return (u,v,w)

Dec(crs,sk,(u,v,w)): return u-oy-1/By
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Our concrete shuffle is based on the Groth-Lu shuffle [GLO7]

e CRS of size O(M), proofs of size O(L) (but M of them)

e Based on static pairing-based assumptions

Basically, alter their proofs and make them malleable (i.e., show they satisfy
CM-friendliness)

End up with CRS of size O(M), proofs of size O(L+M) (improvement over
[CKLM12], which had constant-sized CRS but proofs of size O(L?+M))
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To split BBS decryption key sk = (a,B), just pick o1,B1,...,0N-1,Bn-1 + Fp and set
on=-1/x->aand Bn=-1/B-) Bi;then o1 + ... + an=-1/x and B1 + ... + Pn =

-1/B -
a
Observe that for ¢ = (u,v,w) = Enc(pk,m): @ it

. |‘| Uu%i-vBi = yXt1++ok. yB1+..+Bk.

—_—

— u-1/0( V-1/BW

I
3

Also want verification key vk = (Com(sk1)=(Com(c1),Com(p1)),...,Com(skn))
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input size? O(M) + O(N) + O(L+M) + O(L+N) = O(L+M+N)

Also show this satisfies notion of vote privacy for elections
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Conclusions and open problems

The notion of compact threshold decryption allows for proofs of size O(L+N)

This means, theoretically, that election verification size can be O(L+M+N)

Provided a concrete election meeting this bound

Full version is online at eprint.iacr.org/2012/697

Thanks!
Any questions?
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