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Abstract—Modern embedded computing systems such as med-
ical devices, airplanes, and automobiles continue to dominate
some of the most critical aspects of our lives. In such systems,
the movement of information throughout a device must be
tightly controlled to prevent violations of privacy or integrity.
Unfortunately, bounding the flow of information can often present
a significant challenge, as information can flow through channels
that are difficult to detect, such as timing channels. As has
been demonstrated by recent research in hardware security,
information flow tracking techniques deployed at the hardware
or gate level show promise at identifying these “timing flows” but
provide no formal statements about this claim nor mechanisms
for separating out timing information from other types of flows.

In this paper, we first prove that gate-level information flow
tracking can in fact detect timing flows. In addition, we work
to identify these timing flows separately from other flows by
presenting a framework for identifying a different type of flow
that we call functional flows. By using this framework to either
confirm or rule out the existence of such flows, we leverage
the previous work in hardware information flow tracking to
effectively isolate timing flows. To show the effectiveness of this
model, we demonstrate its usage on three practical examples:
a shared bus (I2C), a cache in a MIPS-based processor, and an
RSA encryption core, all of which were written in Verilog/VHDL
and then simulated in a variety of scenarios. In each scenario, we
demonstrate how our framework can be used to identify timing
and functional flows and also analyze our model’s overhead.

Index Terms—Timing Channels, Hardware Security, Informa-
tion Flow Tracking, Testing.

I. INTRODUCTION

New research on hardware security has shown that it is
possible to tightly constrain the flow of information in a
system. With exploits being continuously exposed in many
safety-critical embedded systems such as implantable medical
devices [1] and automobiles [2], hardware security research is
becoming increasingly sought after as a way to provide early
detection and formal guarantees. Information flow tracking
mechanisms found at the gate level [3], [4], [5], [6] have shown
to be a promising solution to this class of security problems,
as they allow designers to test security properties before a chip
is ever fabricated.
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The security problems that exist in hardware, more often
than not, cannot be solved by software mechanisms alone.
As an example, in order to show that two devices on a bus
are non-intefering, it is required that the devices not intefere
directly (i.e., by corrupt transmitted data) or through timing
(i.e., by delays in response time). At first glance, these timing
variations might seem benign, but they have been recently ex-
ploited by many to extract secret encryption keys from miss/hit
delays in processor caches [7], [8], [9], [10]. These attacks
rely on a exploiting information leaking through a timing
channel, where an attacker is able to deduce information by
simply measuring execution time. Since modern hardware is
now increasingly coupled with non-determinism and hidden
state, methods for detecting and even reasoning about these
types of information leaks is an increasingly complex problem.
In some cases, these timing channels might not fit within
the threat model of the system and thus might not be of
concern. Nevertheless, the techniques for assisting hardware
designers in reasoning and understanding these types of leaks
are a necessity. Only when hardware designers understand the
potential leaks in their designs (including through time) can
they make an informed decision about its security.

The properties found at the gate level, most notably us-
ing gate level information flow tracking (GLIFT), provide a
promising remedy to this problem. Since GLIFT targets the
lowest digital abstraction, it is able to detect and capture
information leaking through time. This claim, however, is
made in some of the initial work on GLIFT [3], [5], [11] but
never thoroughly formalized. One of the specific contributions
of this work is to make this formalism much more apparent
and we do so in Section IV.

In addition, if a hardware designer using GLIFT detects
that there is an information flow, there is no way to separate
out the timing information from other functional information.
Following the bus example as before, if a hardware designer
were to observe an information flow using GLIFT, it would
not be obvious whether or not this flow was from direct means
(a device corrupting data on the bus) or by affecting another
device’s response time. Other timing-based information flows
do happen quite frequently in modern computing systems as
well. For example, in a system-on-chip (SoC) there may exist



an access control mechanism between a core A and core B
to prevent A from reading/writing to B. However, A issuing a
READ/WRITE request to B may affect when B can respond
to other requests. Thus A can affect the time in which core B
can respond without directly affecting its data.

The second contribution of this work is to help solve this
problem. We present a formal model in Section V that, when
used in conjuction with GLIFT, isolates timing information
from other flows of information. This model expands on our
previous work [12] by providing more thorough and complete
definitions, another application example (a shared bus), and
more detailed discussion. As briefly mentioned, whether or
not these timing flows are in the threat model depend on the
system at hand. Nevertheless, this framework provides a way
for hardware designers to reason about these timing flows.

To show the practicality of our framework, we explore in
detail two common shared resources which are at the heart of
interference in modern systems: the shared bus (Section VI)
and CPU cache (Section VII). The shared bus in modern
systems has been the source of the so called bus-contention
channel [13] in which information can be covertly communi-
cated through the traffic on a global bus. Previous work has
explored how to identify information flows in global buses
using GLIFT [11] but has fallen short of classifying these
flows as functional or timing. Beyond the bus, we examine
in Section VII the CPU cache; as previously mentioned, the
cache is a common vulnerability in modern systems, as it
is typically susceptible to leaking secret information through
timing channels. As an additional data point, for a more
thorough assessment of our technique, we demonstrate our
analysis is effective at detecting timing channels in an RSA
encryption core from opencores.org in Section VIII. For all
examples, we do not make claims about complete information
security, but rather increased confidence by identifying the
presence of functional information and separating it from
timing channels. Before we present our formal model and
its use, we outline some essential preliminary definitions in
Section III and formal definitions of GLIFT and information
flow tracking using GLIFT in Section IV.

II. THREAT MODEL

The specific threat model we target is hardware with poten-
tial timing channels that might adversely affect confidentiality
or integrity. For confidentiality, we address the issue of design-
ers being unable to determine whether or not an information
leak is from timing or direct means. For example, caches have
been of big concern when processes from different trust levels
share cache lines. Data used by a secret program can be, and
has been, extracted solely from the time it takes to perform
memory operations.

For integrity and availability, we address concerns related to
timing-based interference. For example, if a hardware designer
is building a system-on-chip and wishes to isolate high-
integrity cores from less trusted third-party ones, while still
allowing resource sharing, then he could use this framework
to reason about the timing effects that the less trusted cores

have on the high-integrity ones. This type of property is
often desired in the department of defense where Red-Black
separation is required.

In both cases, our framework gives designers further insight
into potential vulnerabilities so they can make better decisions.
In some cases, these timing flows might be of no concern at
all; i.e., the attack space of the cache or the timing effects on
high-integrity cores are simply not in the threat model of the
designer. Regardless, this work provides hardware designers
with tools to more accurately evaluate their threat model,
giving rise to increased confidence and more secure designs.

III. PRELIMINARY DEFINITIONS

Before defining information flows and related concepts, we
must first define some preliminary notions formally. Many of
these notions are commonly understood by hardware design-
ers, but we formulate them in such a way as to fit our model
in a clear and concise manner. We start with the notion of
time; as we are working at the gate level, the only notion of
time that we consider is the system clock.

Definition 1. We define the clock to be a function with no
inputs that outputs values of the form b ∈ {0, 1}. We define
a clock tick to be the event in which the output of the clock
changes from 0 to 1. Finally, we define a time t to be the
number of clock ticks that have occurred, and we define T to
be the set containing all possible values of t.

Our formal definition of time captures what we intuitively
expect: some stateless hardware component will output a
stream of ticks, and a separate stateful component will measure
the number of ticks and use this to keep track of time. By
keeping track of time, we can define an event as a given value
at a certain point in time.

Definition 2. [14] For a set of data values Y , a discrete event
is the pair e := (y, t) for y ∈ Y and t ∈ T (where we recall T
is the set of all possible time values). We also define functions
that recover the value and time components of an event as
val(e) = y and time(e) = t respectively.

To keep track of how values change over time, we can also
define a sequence of events as a trace.

Definition 3. For a value n ∈ N and a set Y , we define a trace
A(Y, n) to be a sequence of discrete events {ei = (yi, ti)}ni=1

that is ordered by time; i.e., time(ei) < time(ei+1) for all i,
1 ≤ i < n, and such that val(ei) ∈ Y , time(ei) ∈ T for all
i, 1 ≤ i ≤ n. When the values of Y and n are clear, we omit
them and refer to the trace simply as A.

The way in which we have currently defined an event is
quite broad: any value at any time can be considered an event.
As an example, consider a system that outputs some value on
every clock tick; if we run such a system for k clock ticks and
record each output, then we will obtain a trace of size k. In
many cases, however, events in this trace may be redundant, as
the system might output the same value for many clock ticks
while performing some computation. In this case, we would



be interested not in the entire progression of events, but only
in the case when the value of the output changes. To capture
this, we define the distinct trace.

Definition 4. For a trace A(Y, n), we define the distinct trace
of A to be the longest subsequence d(A) ⊆ A(Y, n) such that
for all ei−1, ei ∈ d(A) it holds that val(ei) 6= val(ei−1).

Constructing the distinct trace d(A) of A is quite simple:
first, include the first element of A in d(A). Next, for each
subsequent event e, check whether the last event e′ in d(A)
is such that val(e′) = val(e); if this holds, then skip e
(i.e., do not include it) and if it does not then add e to
d(A). As an example, consider a trace of two-bit values
A = ((00, 1), (00, 2), (01, 3), (01, 4), (11, 5), (10, 6)).
Then the distinct trace d(A) will be d(A) :=
((00, 1), (01, 3), (11, 5), (10, 6)), as the values at time 2
and 4 do not represent changes and will therefore be omitted.

With these definitions in hand, we can model a finite state
machine system F that takes as input a value x in some set
X and returns a value y in some set Y in a similar manner
as past work [15]. To be fully general and consider systems
that take in and output vectors rather than single elements, we
assume that X = X1× . . .×Xn and that Y = Y1× . . .×Ym
for some m,n ≥ 1, which means that an input x looks like
x = (x1, . . . , xn) and an output y looks like y = (y1, . . . , ym).
To furthermore acknowledge that the system is not static and
thus both the inputs and outputs might change over time, we
instead provide as input a trace A(X, k) for some value k, and
assume our output is a trace A(Y, k).

Definition 5. [15] A finite state machine (FSM) F is defined
as F = (X,Y, S, s0, δ, α), where X is the set of inputs, Y the
set of outputs, S the set of states, and s0 ∈ S the starting state.
δ : X × S → S is the transfer function and α : X × S → Y
is the output function.

Since we are dealing with circuit implementations of finite
state machines, both δ and α are represented as combinational
logic functions. In addition, both δ and α can be called on a
trace. B = α(A, s0) generates a trace of output events B =
(e0, e1, · · · ek) during the execution on input trace A starting
in state s0. This notation describes α executing iteratively; it
takes a state and trace as input and executes to completion
producing an output trace. When the starting state is assumed
to be the initial state, we use the notation α(A).

Now, since we are concerned with flows of information from
a specific set of inputs (the subset of inputs which are of
security concern), we need to formalize how to constrain the
others. Recall first our intuition: an information flow exists
for a set of inputs to the system F if their values affect the
output (either the concrete value or its execution time). One
natural way to then test whether or not these inputs affects
the output is to change their value and see if the value of the
output changes; concretely, this would mean running F on
two different traces, in which the values of these inputs are
different. In order to isolate just this set of inputs, however,
it is necessary to keep the value of the other inputs the same.

To ensure that this happens, we define what it means for two
traces to be value preserving.

Definition 6. For a set of inputs {xi}i∈I and two traces
A(X, k) = (e1, . . . , ek) and A(X, k)′ = (e′1, . . . , e

′
k), we say

the traces are value preserving with respect to I if for all
ei ∈ A and e′i ∈ A′ it is the case that time(ei) = time(e′i),
and if val(ei) = (x1, . . . , xn) and val(e′i) = (x′1, . . . , x

′
n), then

xi = x′i for all i 6∈ I .

If two traces are value preserving, then by this definition we
know that the only difference between them is the value of the
tainted inputs {xi}i∈I . Taint will be formally defined shortly,
but, as an example, secret data would be tainted and then
tracked to ensure that it is not leaking to somewhere harmful.
In this example, the set of secret inputs would be the set I .
We will use this definition in the next section to prove that
GLIFT detects both functional and timing information flows.

IV. INFORMATION FLOW TRACKING AND GLIFT

Information flow tracking is a common method used in
secure systems to ensure that secrecy and/or integrity of
information is tightly controlled. Given a policy specifying
the desired information flows, such as one requiring that
secret information should not be observable by public objects,
information flow tracking helps detect whether or not flows
violating this policy are present.

In general, information flow tracking associates data with a
label that specifies its security level and tracks how this label
changes as the data flows through the system. As an example,
consider a system with two labels: public and secret, and
a policy that specifies that any data labeled as secret (e.g., a
secret message) should not affect or flow to any data labeled as
public (e.g., an untrusted shared memory) without first flow-
ing through an encryption unit. More generally, information
flow tracking can be extended to more complex policies and
labeling systems (i.e., in general high data should never flow
to low); as such, it has been used in all levels of the computing
hierarchy, including programming languages [16], operating
systems [17], and instruction-set/microarchitectures [18], [19].
Recently, information flow tracking was used by Tiwari et
al. [3] at the level of logic gates in order to dynamically track
the flows of each individual bit.

In the technique used by Tiwari et al., called gate level
information flow tracking (GLIFT), the flow of information for
individual bits is tracked as they propagate through Boolean
gates; GLIFT was later used by Oberg et al. [11] to test for
the absence of all information flows in the I2C and USB
bus protocols and by Tiwari et al. [4] to build a system that
provably enforces strong non-interference. Further, it has been
used to prove timing-based non-interference for a network-
on-chip architecture in the research project SurfNoC [20].
Since its introduction, Tiwari et al. have expanded GLIFT
to what they call “star-logic” which provides much stronger
guarantees on information flow [4]. Briefly, GLIFT tracks flow
through gates by associating with each data bit a one-bit label,



commonly referred to as taint, and tracking this label using
additional hardware known as tracking logic.

A. Formal definitions for GLIFT

To be precise, we present definitions of tracking logic and
taint. First, it is important to understand how a “wire” in a
logic function is tainted. We define this formally as follows:

Definition 7 (Taint). For a set of wires (inputs, outputs, or
internals) X , the corresponding taint set is Xt. A wire xi for
x = (x1, . . . , xi, . . . , xn) ∈ X is tainted by setting xit = 1
for xt ∈ Xt and xt = (x1t , . . . xit , . . . xnt).

In this definition, and in what follows, the elements of X
and Xt are given as vectors; i.e., an element x ∈ X has
the form x = (x1, . . . xn) for n ≥ 1. For single-bit security
labels (which we use exclusively in this paper), x ∈ X and
its corresponding taint vector xt ∈ Xt are the same length.

Now that we have a definition for taint, we can formally de-
fine the behavior of a tracking logic function and informatoin
flow with a tracking logic function.

Definition 8 (Tracking logic). For a combinational logic
function f : X → Y , the respective tracking logic function
is ft : Xt × X → Yt, where Xt is the taint set of X and
Yt the taint set of Y . If f(x1, . . . , xn) = (y1, . . . , ym), then
ft(x1, . . . , xn, x1t , . . . , xnt

) = (y1t , . . . , ymt
), where yit = 1

indicates that some tainted input xj (i.e., an input xj such
that xjt = 1) can affect the value of yi.

Definition 9 (Information flow). For a combinational logic
function f : X → Y and a set of inputs {xi}i∈I , an
information flow exists with respect to an output yj if ft(xt) =
(y1t , . . . , y(j−1)t , 1, y(j+1)t , . . . , ymt), where each entry xit of
xt is 1 if i ∈ I and 0 otherwise. If there exists an index j such
that yjt = 1, we just say an information flow exists.

To understand how the tracking logic is used, consider
a function with public and secret labels; then a label
xit is 1 if xi is secret, and 0 otherwise. When considering
a concrete assignment (a1, . . . an) with each aj being 0
or 1, running f(a1, . . . , an) will produce the data output
(y1, . . . , yi, . . . , ym), and running ft(a1, . . . , an, a1t , . . . , a1n)
will indicate which tainted input can affect the values of
which outputs (by outputting yit = 1 if a tainted input affects
the value of yi and 0 otherwise). Going back to our sample
function, if we observe some output yit = 1 from ft, we know
that a secret input affects the output yi of f . If yi is public,
then this flow would violate the security policy.

Typically, each individual gate and flip-flop is associated
with such tracking logic in a compositional manner. In other
words, for each individual gate (AND, OR, NAND, etc.),
tracking logic is added which monitors the information flow
through this particular gate. By composing the tracking logic
for each gate and flip-flop together, we can form an entire
hardware design consisting of all the original inputs and
outputs, with the addition of security label inputs and outputs.
Care must be taken to derive the tracking logic for each

gate separately, however, as the way in which the inputs to
a gate affect its output vary from gate to gate. As an example,
consider the tracking logic for a AND gate as shown in
Figure 1.

x1 x2 

F 

x2 x1 

F 

x2 t x1 

t 

X1 X2 X1t X2t Ft 

1 0 1 0 0 

1 0 0 1 1 

0 1 1 0 1 

Partial Truth Table 

t 

(b) (c) (a) 

Fig. 1. (a) A simple AND gate. (b) A partial truth table for the tracking
logic of an AND gate. Ft = 1 iff a tainted input affects F . (c) The tracking
logic for an AND gate.

Simply by definition, we know that if some input of a AND
gate is 0, the output will always be 0 regardless of the other
inputs. In other words, if we have inputs x1 = 1 and x2 = 0
with security labels x1t = 1 and x2t = 0 as shown in Figure 1,
then the output will actually be untainted even though x1t = 1,
because the value of x1 has no observable effect on the output
of the gate (again, because x2 = 0 and thus the output will be
1 regardless). By building a truth table for every gate primitive,
tracking logic can be derived in this manner and stored in a
library; the tracking logic can then be applied to the gate in
a manner similar to technology mapping. As an example of
how to compose these tracking logics, we consider a 2-input
multiplexer (MUX), which is composed of two AND gates and
a single OR gate where the output of the AND gates feed the
inputs of the OR gate. First, the tracking logic for each AND
gate and the single OR gate is generated. Then, the output of
the tracking logic for each AND gate is fed as inputs to the
tracking logic for the OR gate.

To use GLIFT in practice, a hardware description of the
design is written in a hardware description language (HDL),
such as Verilog or VHDL, and this description is then synthe-
sized into a gate-level netlist using traditional synthesis tools
such as Synopsys’ Design Compiler. A gate-level netlist is
a representation of the design completely in logic gates and
flip-flops. Next, the GLIFT logic is added in a compositional
manner (as we just described); i.e., for every gate in the
system, we add associated tracking logic which takes as
input the original gate inputs and their security labels and
outputs a security label. Given a security policy such as our
confidentiality example (i.e., secret inputs should not flow to
the public output), GLIFT can then be used to ensure that
the policy is not violated by checking that the output of the
tracking logic ft is not 1. It is important to remember that ft
is defined to report 1 iff a tainted input can actually affect the
output. In other words, it will report 1 if at any instant in time
a tainted input can affect the value of the output.

One of GLIFT’s key properties is that it targets a very



low level of computing abstraction; at such an abstraction, all
information becomes explicit. In particular, because GLIFT
tracks individual bits at this very low level, it can be used to
explicitly identify timing channels. To support this claim, the
following sections present some preliminary definitions and a
model that, when used in conjunction with GLIFT, can test for
timing channels. Such a model will be used in this paper to
identify timing channels in a shared bus in Section VI, CPU
cache in Section VII, and an RSA module in Section VIII.

B. GLIFT and timing channels
In order to have a clear understanding of timing channels, it

first helps to specify a definition of a timing channel familiar to
hardware designers. We define specifically a timing-only flow,
where an input affects only the timestamp of output events
and not the values. To be clear, we are concerned with timing
leaks at the cycle level. Stated differently, we assume that
an attacker does not have resources for measuring “glitches”
within a combinational logic function itself. Rather, he can
only observe timing variations in terms of number of cycles
at register boundaries. With these assumptions, we present this
definition in order to prove that GLIFT in fact captures such
channels.

Definition 10 (Timing-only flow). For a FSM F with input
space X and output function α, a timing-only flow exists for
a set of inputs {xi}i∈I if there exists some value k ∈ T and
two input traces A(X, k) and A(X, k)′ such that A and A′

are value preserving with respect to I , and for B = α(A)
and B′ = α(A′) it is the case that val(ei) = val(e′i) for all
ei ∈ d(B) and e′i ∈ d(B′) and there exist ej ∈ d(B) and
e′j ∈ d(B′) such that time(ej) 6= time(e′j).

This definition captures the case in which a set of inputs
affect only the time of the output. In other words, changing
a subset of the tainted inputs will cause a change in the
time in which the events appear on the output, but the values
themselves remain the same. Before we can use this definition
to prove that GLIFT captures timing-only channels, we need
to define the GLIFT FSM Ft.

Referring back to Definition 5, a FSM consists of two
combinational logic functions α and δ. Thus there exists
tracking logic functions αt and δt according to Definition 8.
Using this property, we can define the GLIFT FSM Ft, which
will be used to prove that GLIFT detects timing-only flows.

Definition 11. Given a FSM F = (X,Y, S, s0, δ, α),
the FSM tracking logic Ft is defined as Ft =
(X,Xt, Yt, S, s0, St, s0t , δt, αt) where X , S, and s0 are
the same as in F , St is the set of tainted states, s0t ∈ St the
taint of the starting state, Xt is the set of tainted inputs, Yt
is the set of tainted outputs, δt the tracking logic of δ and αt

the tracking logic function of α.

Now that these definitions are in place, we can prove that
GLIFT can detect timing-only flows.

Theorem 1. The FSM tracking logic Ft of a FSM F captures
timing-only channels.

Proof: Suppose there exists a timing-only channel for
a finite state machine F with respect to the set of tainted
inputs I . By Definition 10, this means there must exist
value-preserving traces A(X, k) and A(X, k)′ such that, for
B = α(A) and B′ = α(A′), val(ei) = val(e′i) for all
ei ∈ d(B) and e′i ∈ d(B), but there exist ej ∈ d(B) and
e′j ∈ d(B′) such that time(ej) 6= time(e′j). Since ej ∈ d(B)
implies that ej ∈ B (and likewise for e′j), this means that
B 6= B′.
F generates an output every clock tick, so for all ej ∈ B

and e′j ∈ B′, time(ej) = time(e′j), and thus there must exist
some e` ∈ B and e′` ∈ B′ such that val(e`) 6= val(e′`) (because
B 6= B′). By Definition 6, all input values remain the same
for all i /∈ I , meaning the only difference between them is in
the tainted inputs, and thus the difference in output must have
been caused by a tainted input. By Definition 8, αt would thus
have an output of (y1t , . . . , y`t = 1, . . . , ymt

), as the value if
y` in the output of α was affected by a tainted input. By
Definition 9, this means GLIFT has indicated an information
flow must exist. As the only possible flow is timing-based,
GLIFT thus captures timing-only flows.

Since GLIFT operates at the lowest level of digital abstrac-
tion, all information flows become explicit. Thus, if at any
instant in time a tainted input can affect the value of the output,
GLIFT will indicate so by definition. At the FSM abstraction,
as defined in Definition 10, this type of behavior often presents
itself as a timing channel. This proof demonstrates that GLIFT
can in fact identify these types of information flows. What is
needed, however, is to formally understand how to separate
these types of timing flows from other functional ones. In
the next section we demonstrate how GLIFT can be used in
conjuction with finding functional flows to isolate this timing
information.

V. ISOLATING TIMING CHANNELS

Hardware 
Information Flows

Physical Phenomena 
(out of scope)

Logical Flows 
(captured by GLIFT)

Functional FlowsTiming Flows EM Radiation Power

Fig. 2. The classes of information flows in hardware. In this work, we
are concerned with logical flows that GLIFT captures, including timing and
functional flows. Physical phenomena are out of the scope of this work.

As discussed in the previous section, GLIFT allows system
designers to determine if any information flows exist within
their systems even those through timing-channels. To be
concise, at the digital level, there are two possible types of
flows which we name functional flows and timing, as seen in
Figure 2. Intuitively, a functional flow exists for a given set of
inputs to a system if their values affects the values output by
the system (for example, changing the value of a will affect



the output of the function f(a, b) := a+b), while a timing flow
exists if changes in the input affect how long the computation
takes to execute.

While GLIFT will tell the designer only if any such flows
exist, in this section we create a formal model for determining
whether or not the system contains specifically functional
flows. When used in conjunction with GLIFT, this technique
therefore allows us to also determine what type of flow is
occuring: if GLIFT determines that no flow exists, then clearly
there is no flow. If instead GLIFT determines that a flow does
exist but we can demonstrate that no functional flow exists,
then we know that a timing flow must exist. What is left open,
however, is the interesting case in which GLIFT determines
that a flow exists but we determine that a functional flow does
exist; in this case, we are unable to determine if a timing flow
exists as well. In practice, however, benign functional flows
are quite rare. Their biggest occurrences are in cryptographic
operations (where the output is a direct function of the secret
key) and in covert channels (where two subsystems will
covertly communicate using varying amounts of seemingly
functional noise). We would argue that in most other cases,
a functional flow is likely to be something that violates a
confidentiality or integrity policy. For example, a functional
leak of the key without going through a cryptographic block
would be detrimental to the security of the system.

A. Finding Functional Flows

Now that some intuition of the problem has been presented,
we now discuss our testing framework as shown in Figure 3.
Here GLIFT is used in conjuction with finding functional
flows to isolate timing information. If GLIFT determines that
there is no flow, we know there is no functional nor timing
information flow. If, however, GLIFT determines there is a
flow and we can find no functional flow with a reasonable
number of traces, then we have increased confidence that
the information flow occurred from a timing channel. In this
section, we discuss how to find functional flows. We begin
with the strongest possible definition and then weaken it
to make it more amenable to testing techniques familiar to
hardware designers.

Definition 12 (Functional flow). For a deterministic FSM F
with input space X and output function α, we say that a
functional flow exists with respect to a set of inputs {xi}i∈I if
there exists some value k ∈ T and two input traces A(X, k)
and A(X, k)′ such that A and A′ are value preserving with
respect to I , and for B := α(A) and B′ := α(A′) it is the
case that there exists ei ∈ d(B) and e′i ∈ d(B′) such that
val(ei) 6= val(e′i).

This definition says that, if there is some functional flow
from this set of inputs to the output, then there exist input
traces of some size k that will demonstrate this flow; i.e.,
if a different output pattern is observed by changing only
the values of these particular inputs, then their value does
affect the value of the output and a functional flow must exist.
In practice, however, this definition is not entirely useful: a
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Fig. 3. How our method can be used with GLIFT to isolate timing channels.
If GLIFT says there is a flow and we do not find a functional flow, we know
there exists a timing channel. If we find a functional flow we cannot conclude
the existence of a timing channel.

system designer wanting to isolate timing flows by ensuring
that no functional flows exist would have to look, for every
possible value of k, at every pair of traces of size k in which
the value of this set of inputs differs in some way; only if he
found no such pair for any value of k would he be able to
conclude that no functional flow exists. We therefore consider
how to meaningfully alter this definition so as to still provide
some guarantees (albeit weaker ones) about the existence of
functional flows, without requiring an exhaustive search (over
a potentially infinite space!).

Definition 13 (Functional flow). For a deterministic FSM F
with input space X and output function α, we say that a
functional flow exists with respect to a set of inputs {xi}i∈I
and an input trace A(X, k) if there exists an input trace
A(X, k)′ such that A and A′ are value preserving with respect
to I and for B := α(A) and B′ := α(A′) it is the case
that there exists ei ∈ d(B) and e′i ∈ d(B′) such that
val(ei) 6= val(e′i).

At first glance, this definition already seems much more
useful: instead of looking just at the set of inputs, we also
consider fixing the first trace. If we then construct our second
trace given this first trace to ensure that the two are value
preserving, then comparing the distinct traces of the output
will tell us if a functional flow exists for the trace. Once
again, however, we must consider what a system designer
would have to do to ensure that no functional flow exists:
given the first trace A, he would have to construct all possible
traces A′; if the distinct traces of the outputs were the same
for all such A′, then he could conclude that no functional flow
existed with respect to A. Once again, this search space might
be prohibitively large, so we consider one more meaningful
weakening of the definition.

Definition 14 (Functional flow). For a deterministic FSM F
with input space X and output function α, we say that a func-



tional flow exists with respect to a set of inputs {xi}i∈I and
input traces A(X, k) and A(X, k)′ that are value preserving
with respect to I if for B := α(A) and B′ := α(A′) it is the
case that there exists ei ∈ d(B) and e′i ∈ d(B′) such that
val(ei) 6= val(e′i).

While this definition provides the weakest guarantees on the
existence of a functional flow, it allows for the most efficient
testing, as we need to pick only pairs of traces. Picking
traces can be done in a variety of ways. The best approach
is for the hardware designer to pick pairs of traces which
will effectively stimulate the security issues in the designs. In
general, however, this may be quite difficult since the person
testing the hardware design may have limited knowledge of
its operation. If the hardware designer has trouble picking
two traces, a promising alternative is to pick random pairs
of traces. In addition, the guarantees of this definition are not
as weak as they might seem: they say that, given the output B,
by observing B′ as well, we are not learning any additional
information about the inputs {xi}i∈I than we learned just
from seeing B. Again, while this does not imply the complete
lack of any functional flow, it does provide evidence in that
direction (and running this procedure with more, carefully
chosen pairs of traces would only strengthen that evidence).

Finally, we discuss our requirement that the system F be
deterministic, and observe that it is not as strict as it might
seem. As discussed at the beginning of the section, we are
interested only in flows that are detectable by GLIFT. Physical
processes that can be used to generate randomness, such as
the current power supply or electromagnetic radiation, are
therefore out of the scope of this work. We can nevertheless
consider randomness, however, in the form of something like
a linear feedback shift register (LFSR), which is in fact
deterministic given its current state; the randomness produced
by an LFSR can therefore be held constant between two traces
by using the same initial state.

B. A sample usage: fast/slow multiplier

To build intuition for how our model determines whether or
not a functional flow exists, we consider a simple system as
shown in Figure 4.

Multiplier 
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Fig. 4. On the left, we can see the inputs and outputs of the system S: it
takes in two multi-bit inputs A and B and two single-bit inputs, fast and a
clock input clk, and outputs P := A×B. On the right, we can see that the
system first picks an ALU to use based on the value of fast and then uses
that ALU to perform the multiplication.

As we can see, the system consists of a pair of two-input
multipliers, one fast and one slow. On inputs A, B, and fast,

the system will use fast to determine which of the hardware
multipliers to use. For both A and B, there is a clear functional
flow from the input to the output, as P := A×B. The input
fast, however, has no effect on the value of the output P , as
it simply selects whether to perform a fast or slow multiply.
There is therefore no functional flow from fast to the output,
but there is a clear timing flow, as we can see that the latency
with which P is computed is highly dependent on the value
of fast.

To confirm this intuition that the flow from fast must be
timing rather than functional, we look at this input through
the lens of our technique described above. Using as F the
system in Figure 4, we can define the input space to be X :=
(Z,Z, {0, 1}); i.e., all tuples consisting of two integer values
and one bit, and our output space to be Y := Z. As mentioned,
we are interested in whether or not a functional flow exists for
fast, so we will define this to be our set of inputs. Now, we
pick values A0 and B0 for A and B respectively, and set our
first trace to be A := ((A0, B0, 0), t0); i.e., the single event (at
an arbitrary time t0) in which A0 and B0 are multiplied using
the slow ALU. We then set our second trace to be A′ :=
((A0, B0, 1), t0), and run these two traces to obtain output
traces B = (P, t) and B′ = (P ′, t′). As A0 and B0 were the
same for both traces, it is clearly the case that P = P ′ and thus
val(ei) = val(e′i) for all ei ∈ d(B) and e′i ∈ d(B′), meaning
no functional flow exists with respect to these two traces. As
discussed above, this also provides evidence that no functional
flow exists for fast at all, although further testing would likely
be required to rule out this functional flow completely.

Although this example is a bit contrived, it effectively
shows that finding hardware timing channels in practice is
non-trivial, and testing for them requires some intuition (for
example, knowing which traces to pick). In addition, many
issues related to this method are analogous to those that may
be encountered during conventional testing. For example, if a
functional difference only manifests itself after N clock cycles
and the hardware designer can only simulate for some number
of cycles less than N , then he will not observe this difference.
Some of these issues might be mitgated using some formal
technologies, but we do not address those in this work and
leave them for valuable future research. In the next section,
we discuss a more complex example in which we examine how
timing channels can be detected and eliminated in a shared bus
system.

VI. THE BUS COVERT CHANNEL

Shared buses, such as the inter-integrated circuit (I2C)
protocol, universal serial bus (USB), and ARM’s system-on-
chip AMBA bus, lie at the core of modern embedded appli-
cations. Buses and their protocols allow different hardware
components to communicate with each other. For example,
they are often used to configure functionality or offload work
to co-processors (GPUs, DSPs, FPGAs, etc.). As the hardware
in embedded systems continues to become more complex, so
do the bus architectures themselves, which makes it non-trivial
to spot potential security weaknesses in their construction.



In terms of such security weaknesses, a global bus that
connects high and low entities has inherent security problems
such as denial-of-service attacks, in which a malicious device
can starve one of higher integrity, and bus-snooping, in which
a low device can learn information from a high one. To
ensure the terminology used here is well understood, we
define a timing side-channel as an unintended leakage of
information through how long a computation takes to run. A
timing covert-channel (as used in this bus scenario) refers to
an intended communication between two devices covertly by
using variations in time.

The covert channels associated with common buses are well
researched. One such channel, the bus-contention channel [13]
arises when two devices on a shared bus communicate covertly
by modulating the amount of observable traffic on the bus. For
example, if a device A wishes to send information covertly to
a device B, it can generate excessive traffic on the bus to
transmit a 1 and minimal traffic to transmit a 0. Even if A
is not permitted to directly exchange information with B, it
still may transmit bits of information using this type of covert
channel.

Both clock fuzzing [13] and probabilistic partitioning [21]
have proven to be effective at reducing, if not eliminating,
the bus-contention channel by inserting randomness into the
system. They do not, however, expand beyond this particular
channel and explore whether or not information might leak
through other timing channels associated with the bus archi-
tecture. In addition, previous work using GLIFT has shown
that strict information flow isolation can be obtained in a
shared bus [11], but the work states nothing about how this
information relates to timing. In what follows, we demonstrate
how to use GLIFT and the techniques presented in Section V
to prove that certain information flows in I2C occur through
timing channels.

A. Identifying Timing Flows in I2C

The inter-integrated circuit (I2C) protocol is a simple 2-wire
bus protocol first proposed by Philips [22]. We chose to look
specifically at I2C because of both its wide usage in embedded
applications for configuring peripherals and its simple struc-
ture; there is no reason, however, why the techniques presented
here could not be applied to more sophisticated architectures
or protocols.

In the I2C protocol (seen in Figure 5), a “master” of the bus
initiates a transaction by first sending a start bit by pulling
down the data line (SDA) with the clock line (SCL) high.
“Slaves” on the bus then listen for the master to indicate either
a read or a write transaction. For write transactions, the master
first sends a device address indicating a write and the device
that matches this address responds with an acknowledgement
(ACK). At this point, the master can transmit an internal
register address (sub-address for the device) and the actual
data. The transaction terminates with the master sending a
stop bit. A similar behavior occurs for a read transaction,
except here data transfers from a slave to the master. Since
I2C shares a common bus, there is the potential for several

different covert channels, in addition to the bus-contention
channel described above. To explore these different channels,
we look at three configurations of the I2C bus and discuss the
potential ways in which information can be communicated
covertly. We furthermore discuss how the flows in each of
these covert communications can be classified as either a
functional or timing flow using the techniques presented in
Section V.
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S1 S2 MASTER 
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Fig. 5. (a) Standard I2C configuration. (b) S1 can covertly communicate a 1
to S2 by sending an acknowledgement. (c) S1 can communicate a 0 covertly
to S2 by sending a negative-acknowledgement.

1) Case 1: global bus: A global bus scenario, wherein
multiple devices contend for a single bus, is the most general
and commonly found bus configuration. Consider the example
in which two devices wish to communicate covertly on the
I2C bus as shown in Figure 5. At first glance, there exists an
obvious information flow in this architecture since the devices
themselves can “snoop” the bus. For example, a device S1 can
send an acknowledgement to the master to covertly transmit
a 1 to another device S2; conversely, it can send a negative-
acknowledgement to send a 0. Since S2 observes all activity
on the bus, it can simply monitor which type of message S1

sends and thus determine the communicated bit. While this is
by no means the only type of flow, for the sake of simplicity
we will stick with this scenario throughout the rest of the
section.

To put our model to use on this scenario, we designed
the system shown in Figure 5 in Verilog by constructing
I2C Master and Slave controllers. Since we were interested in
the flows between S1 and S2, we processed the designs in the
manner presented in Section IV and in the previous work. To
be concrete, we took the slave and master RTL descriptions
and synthesized them down to logic gates using Synopsys’
Design Compiler. For each gate primitive in the system, we
added the appropriate GLIFT logic. The result is a system
which contains a master and two slaves, each of which also
has tracking logic associated with it. In a manner similar to
that of previous work, we executed a test scenario wherein
the master performs a write transaction with S1 and S1 sends
an acknowledgement by simulating it in ModelSim 10.0a, a
Verilog simulator. We observed that the GLIFT logic indicates
a flow to S2. At this stage, we have therefore identified that
some type of information flow exists, but it is not entirely
obvious if this was a functional or timing flow.

Since the devices can directly observe all interactions on
the bus, one might expect this to be a functional flow. Not



surprisingly, we utilized the model presented in Section V to
show exactly that. To put this model to use, we abstract the
output y = 〈SCL,SDA〉 of our model since these are the only
two signals observable by S2 (recall that SCL is the clock line
and SDA the data line). In addition, we abstracted the input
traces to our system as A1(X, k) := 〈S1 sending NACK〉 and
A2(X, k) := 〈S1 sending ACK〉; running these through the
system produced two output traces AG1

and AG2
. In a bit more

detail, we collected AG1 by logging the discrete events that
occured when S1 failed to acknowledge a write transaction
from the master (thus intending to covertly transmit a 0).
We then obtained a related trace AG2

, in which S1 does ac-
knowledge the write. By analyzing these traces, we identified
events ej ∈ d(AG1

) and e′j ∈ d(AG2
) (recall that d(AG1

) and
d(AG2) are the distinct traces of AG1 and AG2 respectively,
as defined in Definition 4) such that val(ej) 6= val(e′j). As
a result, from Definition 14 of a functional flow, we know
that a functional flow must exist. Recall, however, that this
does not mean that there exists only a functional flow. Since
GLIFT indicates that there exists a flow, it may be the case
that information flows from S1 to S2 through both functional
and timing channels.

The next case discusses how such a functional flow can
be easily prevented using time-multiplexing of the bus in a
manner similar to probabilistic partitioning [21].

2) Case 2: strict time-multiplexing of the bus: A seemingly
easy solution to eliminate this information flow presented in
Case 1 is to add strict partitioning between when devices may
access the bus, as shown in Figure 6. Here, slaves on the bus
may view the bus only within their designated time slots; this
prevents devices from observing the bus traffic at all times. In
this work, we partition over-conservatively by allowing the bus
to be multiplexed between statically set time slots. In terms
of probabilistic partitioning, we test the case in which the
system is running in secure mode. We are interested in the
same scenario as before: S1 wishes to transmit information
covertly with S2; now, however, the bus-contention channel is
eliminated, as partitioning has made contention impossible.

Master S1 S2

Aribter Aribter clock

SDA

SCL

Fig. 6. Adding strict time-partitioning of the I2C bus. The bus is only
accessed by S1 and S2 in mutually-exclusive time slots.

Because the bus-contention channel has been ruled out, one
might think that a covert channel between S1 and S2 no longer
exists. Nevertheless, information can still be communicated
covertly through the internal state of the master; to therefore
transmit a covert bit, S1 need only leave the master in a
particular state before its time slot expires. For example, many
bus protocols have a time-out period in case a device fails to
respond to a request. If S1 leaves the master in such a state

prior to its time-slot expiring, S2 can observe this state in the
following time slot and conclude, based on the response time
from the master, whether a 0 or a 1 is being transmitted: if
the master’s response time is short, S2 can conclude S1 wishes
to communicate a 1, and if the response time is long it can
conclude a 0. Although this type of covert channel is quite
subtle, by using the model from Section V we can prove that
this information flow occurs through a timing channel.

To prove that this is not a functional flow, we abstract
this system in the same manner as Case 1, except we now
use y = 〈SDAS2

, SCLS2
〉, where SDAS2

and SCLS2
are

the wires observable by S2. In the same manner as Case
1, we set input traces A1(X, k) := 〈S1 sending NACK〉
and A2(X, k) := 〈S1 sending ACK〉 to collect output traces
ATDMA1 and ATDMA2 respectively. Following our model,
we worked to find the existence of an event ej ∈ d(ATDMA1

)
and e′j ∈ d(ATDMA2

) such that val(ej) 6= val(e′j); we found,
however, that no such events existed for this particular testing
scenario. As discussed in Section V, this provides evidence
for the absence of a functional flow; although it does not
completely rule out the existence of such a flow, because we
have chosen our input traces to represent essentially opposite
events (sending a negative-acknowledgement and sending an
acknowledgement), if a functional flow did exist then it is very
likely it would be captured by these two traces. We therefore
conclude that, because GLIFT did indicate the existence of
some information flow and we have provided strong evidence
that a functional flow does not exist, this flow is from a timing-
channel.

3) Case 3: time-multiplexing with master reset: The work
of Oberg et al. [11] using GLIFT for the I2C channel indicated
that all information flows are eliminated when the master
device is reset back to a known state on the expiration of
a slave’s timeslot. In particular, this implies that no timing
channels can exist, and thus the attack from Case 2 no longer
applies. In practice, this trusted reset would need to come from
a trusted entity such as a secure microkernel; we will therefore
assume for our testing purposes that this reset comes from a
reliable source once this subsystem is integrated into a larger
system. With this assumption, we validated this scenario by
adapting the test setup in Case 2 to incorporate the master
being restored to an initial known state once S1’s time slot
expires.

In the same manner as Case 2, we abstract the output
y = 〈SDAS2

, SCLS2
〉. We create input traces A1(X, k) :=

〈S1 sending NACK〉 and A2(X, k) := 〈S1 sending ACK〉 to
log output traces ATDMA1

and ATDMA2
respectively. As

expected, d(ATDMA1 = d(ATDMA2), and thus we again
obtain strong evidence that a functional flow does not exist.

As is hopefully demonstrated by these three cases, identify-
ing the presented covert channels is not necessarily intuitive;
furthermore, hardware designers are likely to easily overlook
these problems when building their bus architectures or de-
signing secure protocols. By combining the tracking logic of
GLIFT with our model, we provide a method for hardware
engineers to systematically evaluate their designs to determine



whether or not techniques such as those used in Case 3 can
in fact eliminate covert channels such as the ones presented
in Case 1 and Case 2.

B. Overheads

To provide an understanding of the associated overheads
with these techniques, we present the simulation times needed
to execute them. We collected the simulation times by using
ModelSim 10.0a and its built-in time function. The sim-
ulations were run on a machine running Windows 7 64-
bit Professional with an Intel Core2 Quad CPU(Q9400) @
2.66GHz and 4.0GB memory.

Case 1 Case 2 Case 3

GLIFT 223.95 ms 230.29 ms 222.40 ms
RTL 210.45 ms 211.72 ms 219.04 ms

TABLE I
SIMULATION TIMES IN MILLISECONDS ASSOCIATED WITH THE THREE

PRESENTED CASES FOR I2C, AND FOR A SINGLE TRACE. GLIFT IMPOSES
A SMALL OVERHEAD IN THE SIMULATION TIME FOR THESE TEST CASES.

As seen in Table I, there is not a significant difference
between simulating the designs with GLIFT logic and the base
register-transfer level (RTL) designs. This is likely due to the
small size of the designs and the relatively short input traces
required for these particular tests. The overheads associated
with GLIFT become more apparent in Section VII when we
discuss identifying timing channels associated with a CPU
cache.

Finally, we mention that, although we consider two input
traces for each case, we present in Table I our simulation times
for only a single input trace. We do this because, as mentioned
in Section V, designers may wish to check even beyond two
traces to gain more assurance that a functional flow does not
exist. Since the simulation time of a particular input trace is
independent of the others, we chose to present the results for
a single trace but note that they can be appropriately scaled
to consider more traces as well.

VII. CACHE TIMING CHANNEL

Recent work has shown CPU caches to be one of the biggest
sources of hardware timing channels in modern processors [7],
[8], [9], [10]. In a modern computing system, a cache can
be seen as a performance optimization that provides a “quick
look-up” for frequently used information. Caches are typically
built from faster and higher power memory technologies, such
as SRAM, and sit between slower main memory (typically
DRAM) and the CPU core. When a memory region is ref-
erenced by a program, it is brought into the cache for fast
access.

In previous work, the varying latencies of memory accesses
due to cache hits/miss have been exploited. This vulnerability
has been used to completely extract the secret key; these at-
tacks have been divided into three categories: trace-driven [7],
time-driven [8], [9], and access-driven [10]. Access-driven
attacks in particular exploit knowledge about which cache

lines are evicted. Specifically, a malicious process observes
the latency of cache misses and hits and uses these patterns
to deduce which cache lines are brought in/evicted, which in
turn leaks information about the memory address (e.g., the
secret key in AES table look-ups). In this work, we chose to
look at access-driven attacks, as they are the easiest for us
to demonstrate given our current test setup. Furthermore, this
type of cache attack has applications beyond just encryption;
for example, as demonstrated by Ristenpart et al. [23] in their
attack on virtualized systems.

A. Overview of Access-Driven Timing Attacks

At a high-level, an access-driven cache timing attack first
fills the cache using some malicious process. Next, a secret
process uses a secret key to perform encryption. Finally,
the malicious process tries to determine which of the cache
lines were evicted in the encryption process. Since the key is
XORed with part of the plaintext before indexing into a look-
up table, the malicious process can correlate slow accesses
with the value of the secret key.
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Fig. 7. (a) A typical CPU cache. The attack operates by malicious process
first filling the cache with some data D. (b) The victim process encrypts some
data with its secret key, thus bringing in cache lines. (c) The malicious process
can observe which cache lines were evicted from latency, thus deducing the
address and value of key used to index look-up table.

In a bit more detail, we can see a depiction of this attack
in Figure 7. In our test setup, we have a malicious process M
and secret process V (for victim). First, as seen in part (a), M
fills the contents of the cache with some data D. Next, as seen
in part (b), V subsequently runs AES using a secret key as
input for a short duration; this process fills the contents of the
cache. Now, in part (c), M reads D again from memory and
observes the latency of each access. Since M and V share the
cache, M will receive memory responses with lower latency if
V did not evict certain cache lines prior to the context switch,
as they will still reside in the cache. Because the secret key
used by V is an index into look-up tables, the access latencies
of M (i.e., a cache hit or miss) directly correlate with the
value of the secret key.

B. Identifying the Cache Attack as a Timing Channel

Since this attack relies on the timing information available
to M , it can clearly be identified as a type of timing attack.
In this section, we demonstrate this fact more formally by



using GLIFT and our model from Section V to prove that any
information flows are timing-based.

To put this scenario to test, we designed a complete MIPS
based processor written in Verilog. The processor is capable of
running several of the SPEC 2006 [24] benchmarks including
mcf, specrand, and bzip2, in addition to two security bench-
marks: sha and aes, all of which are executed on the processor
being simulated in ModelSim SE 10.0a (a commercial HDL
simulator). All benchmarks are cross-compiled to the MIPS
assembly using gcc and loaded into instruction memory using
a Verilog testbench. The architecture of the processor consists
of a 5-stage pipeline and 16K-entry direct mapped cache (1-
way cache). We chose to use a direct-mapped cache for our
experiments for ease of testing, but note that this analysis
would apply directly to a cache with greater associativity.

Since our particular region of interest is the cache, we focus
our analysis directly on this subsystem. To do so, we apply
GLIFT logic to the cache system as described in Section IV.
This new “GLIFTed” cache is re-inserted into the register-
transfer level (RTL) processor design in the place of the
original RTL cache. Pictorially, this can be seen in Figure 8.
The input and output to the cache system include address
and data lines and control signals (write-enable, memory stall
signals, etc.); each such input and output is now associated
with a taint bit which will be essential to testing whether or not
information flows from our victim process V to our malicious
process M .
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Fig. 8. A block diagram of a simple MIPS-based CPU. The cache is replaced
by one that contains the original cache and its associated tracking logic. Our
testbench drives the simulation of the processor to capture the output traces.

To execute the test scenario, we follow the same procedure
as the access-driven timing attack previously discussed by
having malicious and victim executions share the cache. We
have M first fill the cache by setting all data in the cache. We
then have V execute AES with all inputs to the cache marked
as tainted (i.e. secret). Subsequently, we have M execute and
observe whether or not information from V flows to M . As
expected, we observe that as M reads from memory locations,

secret information immediately flows out of the cache. We
therefore know that a flow exists, but at this stage it is still
ambiguous whether the flow is functional or timing.

To identify exactly which type of channel was identified
by GLIFT, we leverage the benefits of our model by working
to identify a functional flow; as previously discussed, if we
detect no functional flow, then we know the flow must be from
a timing channel. To fit our model, we abstract the output
of the cache as y = 〈dataM 〉 to indicate the cache output
observable by M (note that, in particular, stall is not included
in this output, as it cannot be observed directly by M ).
Following our model, we then defined two traces: A1(X, k) :=
〈V using K1〉 and A2(X, k) := 〈V using K2〉; i.e., the cases
in which V encrypts using two different randomly selected
keys. We then simulated both of these scenarios and logged
all of the discrete events captured by ModelSim to obtain
to output traces AC1 and AC2; by definition of y, these
output traces contain all events observable by M . Once we
collected these traces, we checked whether or not a functional
flow exists for these particular traces by looking for the
existence of events ej ∈ d(AC1) and e′j ∈ d(AC2) such that
val(ej) 6= val(e′j). For these particular traces, we found no
such pair of events. To build an intuition about why this type
of information flow was not functional, it helps to look at
the details of the cache structure. As mentioned, the cache
in this scenario was designed to allow for a context switch
between two running programs M and V . The cache control
logic checks a process ID to ensure that M cannot access
V ’s data and that only its own data is returned on a memory
access. While V is running, all of its information in the cache
is labeled as secret. When M executes, its memory accesses
will not return V ’s data, but rather its own. If M ’s data was
already present, this data would be returned quickly and if
it were not then it would be returned with a delay in time.
The same data would be returned regardless so there is no
functional difference, rather only a difference in the time they
appear. Again, although the fact that no functional flow exists
with respect to these particular traces does not imply the lack
of a functional flow for any traces, it does lend evidence to
the theory that the flow must be timing-based rather than
functional (and additional testing with different keys would
provide further support).

C. Overheads

As we did for I2C in Section VI, we evaluated the overheads
associated with our technique by measuring simulation time.
We collected our measurements using ModelSim 10.0a and its
built in time function running on the same Windows 7 64-bit
Professional machine with an Intel Core2 Quad CPU(Q9400)
@ 2.66GHz and 4.0GB of memory. We measured the time for
the secret process (V ) to run AES on a secret key K1 followed
by a malicious process (M ) attempting to observe which cache
lines were evicted. This measurement was repeated for both
the design with and without GLIFT. For completeness, we
repeated the same process for the second input traces; namely
when V executes AES using K2 followed by M attempting to



observe which cache lines were evicted. The resulting times
from these simulations can be found in Table II.

AESK1
AESK2

GLIFT 381.49 s 392.60 s
RTL 66.30 s 66.76 s

TABLE II
SIMULATION TIMES IN SECONDS FOR AES RUNNING WITH DIFFERENT
ENCRYPTION KEYS, WITH AND WITHOUT GLIFT TRACKING LOGIC. IN
GENERAL, SIMULATING A DESIGN WITH GLIFT LOGIC CAUSES LARGE

SLOW-DOWNS.

As Table II shows, there is a large overhead (≈ 6X)
for using GLIFT to detect whether or not a flow exists.
Furthermore, since the behavior of M is fixed between both
input traces and the only value changing is the secret key, the
results clearly show that a timing channel exists with regards
to the cache, as the execution time for AES on K2 is longer
than that of K1; the existence of such a timing channel was
also identified by GLIFT and our model.

VIII. TIMING CHANNELS IN RSA ENCRYPTION CORE

As an additional point of reference, this section describes
how this model can be applied to detect a timing channel
in an RSA cryptographic core. The RSA public-key cryp-
tosystem [25] is one of the most widely used data encryption
and digital signtuare algorithms. In short, the algorithm uses
modular exponentiation to encrypt and decrypt data. Comput-
ing this exponentiation can be done quickly and efficiently in
hardware.

One approach for computing decryption: Cd (mod n),
where C is the ciphertext, d is the private key and n the
public modulus, is to employ a square-and-multiply algorithm
which iterates over all key bits and performs a multiply each
iteration depending on the value of the key bit. The details
of this algorithm can be seen in Algorithm 1. If the current
key-bit is 1, a multiply is performed otherwise the operation
is skipped. A square is computed every iteration.

Algorithm 1 Basic algorithm for square-and-multiply to com-
pute modular exponentiation. It computes Cd (mod n).
R = 1;
temp = C;
for i = 0 to |d| − 1 do

if bit d[i] = 1 then
R = R · temp (mod n)

end if
temp = temp2 (mod n)

end for
return R

As one might expect, on iterations where an additional
multiply is performed, the run time will be slower. Essentially,
the value of the key will have great influence on the run-time of
the decryption and thus attackers can (and have [26]) exploited
this timing variation to extract the private key.

In hardware, an RSA decryption module1 will not only have
Key and Ciphertext inputs and a Message output, but other
control signals as well. For example, a signal is needed to
notify when the algorithm should begin (start) and also an
output to say when the decryption is completed (rdy). If the
key affects when the Message is ready (i.e. the time in which
rdy is asserted), this timing variation can be exploited by an
attacker.

A. Detecting Leak as Timing Channel

To this end, we apply our analysis to the BasicRSA core
from opencores [27] and determine whether or not there is
a timing channel in the design. Following the same GLIFT
analysis flow, we detect that the key does in fact affect
rdy. Now, to classify this as a timing leak, we apply the
model presented in Section V and abstract the input traces
A := 〈RSA on Key 1〉 and A′ := 〈RSA on Key 2〉 using two
randomly chosen keys and record the output traces B and
B′ by logging the values of the rdy signal for the duration
of the decryption. When applying our model to these output
traces, we find that val(ei) = val(e′i) for all ei ∈ d(B) and
e′i ∈ d(B′). Since GLIFT indicates that there is an information
leak and we did not detect a functional flow, we know that this
leak must be from a timing-channel.

The analysis of this core brings up a necessary discussion.
As described, our model cannot detect the presence of a
timing when a functional one exists as well. For example, the
ciphertext of an encryption algorithm (like RSA) will always
be functionally affected by the key. However, as demonstrated
here, by discovering the key’s effect on the time in which rdy
is asserted, it is possible to conclude that it affects the time
in which the cryptographic process completes. In other words,
this technique is able to conclude that the core has a timing
channel.

IX. RELATED WORK

Most previous work on timing channels has focused on tech-
niques for identifying timing and storage channels in larger
systems, but not specifically in hardware design. Similarly,
there has been significant work in reducing or eliminating spe-
cific timing channels, but little work in providing systematic
testing techniques for identifying such channels.

Some of the most notable work in this area is with regards
to the VAX Virtual Machine Monitor [28]. In one paper,
Wray [29] describes how the timing and storage channels were
analyzed in the VAX Virtual Machine Monitor; the timing
channels described in his paper, however, are specific to the
VAX VMM and a systematic testing method for identifying
them was not discussed. In another paper, Kemmerer [30]
presents a shared matrix methodology for identifying timing
channels; this methodology works by creating a matrix that
compares shared resources, processes, and resource attributes.
Based on these fields and some proposed criteria for a timing
and storage channel, the matrix can be analyzed to determine

1We use decryption here because RSA decrypts using a private key and
encrypts with a public one



whether or not a shared resource can be used as a side
channel. This technique therefore requires the designer to
construct such a matrix and determine the shared resources,
but ultimately still does not provide a general technique for
detecting timing channels in hardware.

In terms of timing channel mitigation in secure systems, one
technique (that we discussed in Section VI) is clock fuzzing,
which was first introduced by Hu in 1991 [13]. Clock fuzzing
works by presenting the system with a seemingly random
clock to make it stochastically difficult for two objects to
synchronize. However, as later discussed by Gray [21], clock
fuzzing in reality only reduces the bandwidth of the timing
channel and does not eliminate it entirely.

Recently, there has been extensive work with regards to
hardware information flow tracking. Dynamic information
flow tracking (DIFT), due to Suh et al. [18] tags information
that comes from potentially untrusted channels and tracks
them throughout a processor. This tag is checked before
branches in execution are taken, and the branch is prevented
if this information originated from an untrusted source. As
demonstrated by Suh et al., DIFT is quite effective at detecting
buffer overflow and format-string attacks, but works at too high
of an abstraction to track information through timing channels.
A similar tracking system, Minos [19], keeps an integrity
bit on information and uses this bit to prevent potentially
malicious branches in execution. Raksha [31] is a DIFT style
processor that allows security policies to be reconfigured and
thus provides a more flexible framework. As mentioned in
Section IV, gate level information flow tracking (GLIFT) [3]
works by tracking each individual bit in a hardware system.
It is a general technique that has been applied to buid an
execution lease CPU [5] and to analyze information flows
in bus protocols [11]. Following this, some recent work
from industry has shown that GLIFT-like techniques can be
effectively applied in practice [32]. GLIFT itself precedes this
work, but their use of similar methods shows that industry is
searching for hardware security testing methods like the one
presented in this paper.

Information flow tracking has also been used in hardware
design languages. Caisson [33] is a hardware security language
that aids hardware designers by using programming language
type-based techniques to prevent unintended information flows
and eliminate timing channels. This work is effective at
helping hardware designers to build secure hardware, but is
not a general technique for testing for timing channels. In this
work, on the other hand, we have focused directly on a formal
testing method for detecting hardware timing channels to make
secure hardware easier to design and test.

X. CONCLUSIONS AND FUTURE WORK

In this work, we presented a framework that can be used
with gate-level information flow tracking (GLIFT) to effec-
tively separate timing flows from functional flows. Using
this separation, designers can make informed decisions about
whether or not to be concerned with information flows iden-
tified by hardware information flow tracking techniques. In

many cases, the designer is likely to be more concerned by
timing channels than by functional flows, while in other cases
the existence of timing channels might cause little concern.

To demonstrate the usefulness of our framework, we applied
it to two common resources in modern systems: a shared bus
and cache. In these examples, we showed how information
flows can indeed be identified as timing-based with the help of
gate level information flow tracking. While in some cases our
framework does not provide any definite guarantees, it does
provide strong evidence to rule out the existence of functional
flows; used in combination with information flow tracking,
which tells us if any flow exists, our framework can therefore
provide strong evidence for the existence of timing channels.

Much future work is possible for both information flow
tracking and for our framework in particular. Most promi-
nently, if a functional flow exists then we cannot say anything
about the existence of a timing flow; one natural question to
ask is therefore if we can identify timing channels even in the
presence of a functional flow. This would have implications
for applications such as data encryption, in which the output
ciphertext is always a function of the secret key, yet it is
critical that an adversary observing encryption not be able to
deduce the secret key using a timing channel. At the present,
solving such a problem seems non-trivial and we leave it as
an important open problem.

Another necessary future contribution is to more accurately
evaluate the number of traces needed to detect a functional
flow. At the gate-level abstraction, as discussed in this work,
finding an answer to this issue appears to be a non-trivial
problem. A potential remedy we have considered is performing
our information flow analysis at an abstraction which does not
include time. If we can treat parts of the system as atomic
operations by eliminating the time component, then observed
information flows would be purely functional. This approach
may be a valuable asset to providing more formal guarantees
about functional flows.
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