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P2P file sharing

Bridging the gap... for zero knowledge proofs

Crypto Systems

Wrote language for zero-knowledge proofs

Removes obstacle, easy to translate from description to implementation

Wrote library for e-cash using this language/interpreter framework 3
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Crypto Systems

Our first attempt: write library from scratch

• Not reusable

• Time-consuming

• Error prone
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Implementing zero knowledge (take 1)

• Lesson learned: even though you know the math, coding can get messy

• Functionality is there, but not easy to use

Coin::Coin(const BankParameters *params, int stat, int lx,
hashalg_t hashAlg, const ZZ &coinIndex, const ZZ 
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Step 1: writing programs in ZKPDL

computation:
  ...

compute:
S := g^(1/(s+x+1))
T := g^u * (g^(1/(t+x+1)))^R

proof:
given:

group: G = <g,h>
elements in G: S, T

prove knowledge of:
exponents in G: u,s,t,x
integer: J

such that:
range: 0 <= J < n
S = g^(1/(s+x+1))

Currently support four ZKP types, enough for vast majority of applications

Should also be easy to add new types if they’re needed

Description in paper Description in ZKPDL
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High-level language, goal was to mirror theoretical descriptions
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Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter

• Specify crypto protocol of choice in the program string

• Feed numeric values in and you’re done!

Solves issues of reusability and of time

Took 3-4 months to build interpreter, then one month to reconstruct library

Proof MyZKP::prove(group_map g, variable_map v, 
    string program) {

   InterpreterProver p;
 p.check(program);

   p.compute(g,v);
   return p.prove();
}
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In addition to usability, can achieve improvements in efficiency
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Have optimizations built into the interpreter

• Cache powers of bases used for modular exponentiation

Often have g^x*h^r mod N, numbers are 1000 bits long!

Use common single- and multi-exponentiation techniques

• Save copy of interpreter state after compilation
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Case study: using ZKPDL for e-cash

13

E-cash was originally developed [Ch82] as replacement for currency

Now, view e-cash in context of token systems

• Our usage in P2P file-sharing schemes [BCE+07]

• Provides anonymous transportation ticketing (future work)

Zero knowledge

P2P file sharing

Crypto Systems

e-cash
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How e-cash works [Ch82, CHL05, CLM07]

14

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

Unlinkability: if Alice spends twice, Bob won’t even know it’s the same person

Deposit: Bob deposits these coins with the bank

Untraceability: Bank cannot trace the deposited coins back to Alice
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Operations:

• Buy

• Barter 

• Withdraw 

• Deposit

Actors:

• Buyer

• Seller 

• Bank

• Peer

How e-cash can improve P2P interactions:

• Guarantees fair exchange [BCE+07,KL10] between peers

• Allows bank to monitor upload/download ratio without sacrificing privacy
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So what aren’t we doing?

• Aren’t guaranteeing anything about the quality of the proofs

You give us a bad (e.g., not sound) proof, get a bad proof back

Checking soundness is well studied by others [CACE]

• As application of zero knowledge, provide library only for e-cash

Idemix project [CH02, BBC+09] provides anonymous credentials
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In summary...

• Wrote interpreter to make cryptographer’s job easier

• Demonstrated efficiency and usability

• Wrote library to make programmer’s job easier

• All source code and documentation available freely online:

• http://github.com/brownie/cashlib

Any questions?
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Zero knowledge proof types

• What types of proofs do we support?

• Proof of discrete log representation (DLR): given c, prove c = g^x*h^r

• Equality of DLR: given c and d, prove c = g^x*h^r and d = g^x*h^s

• Multiplication: prove x = y*z for secret values x, y, z

• Range: for secret x and public lo, hi, prove lo <= x < hi
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