
ZKPDL: A Language-Based System for Zero-
Knowledge Proofs and Electronic Cash

Sarah Meiklejohn (UC San Diego)
C. Chris Erway (Brown University)
Alptekin Küpcü (Brown University)
Theodora Hinkle (UW Madison)
Anna Lysyanskaya (Brown University)

1

Bridging the gap

Crypto Systems

2

Bridging the gap

Crypto Systems

2

Bridging the gap

Crypto Systems

2

Bridging the gap

Crypto Systems

2

Bridging the gap

Crypto Systems

2

Bridging the gap... for zero knowledge proofs

Crypto Systems

3

P2P file sharing

Bridging the gap... for zero knowledge proofs

Crypto Systems

3

P2P file sharing

Bridging the gap... for zero knowledge proofs

Crypto Systems

3

e-cash
library

P2P file sharing

Bridging the gap... for zero knowledge proofs

Crypto Systems

3

e-cash
library

Zero knowledge

P2P file sharing

Bridging the gap... for zero knowledge proofs

Crypto Systems

Wrote language for zero-knowledge proofs

Removes obstacle, easy to translate from description to implementation

Wrote library for e-cash using this language/interpreter framework 3

e-cash
library

Zero knowledge

Zero-knowledge proofs [GMR89,BdSMP91]

4

Prover Verifier

Zero-knowledge proofs [GMR89,BdSMP91]

I have
access

credentials

4

Prover Verifier

Zero-knowledge proofs [GMR89,BdSMP91]

...

I have
access

credentials

4

Prover Verifier

Zero-knowledge proofs [GMR89,BdSMP91]

...

I have
access

credentials
Okay

4

Prover Verifier

Zero-knowledge proofs [GMR89,BdSMP91]

...

I have
access

credentials
Okay

Soundness: system won’t accept
incorrect proof

Zero-knowledge: system won’t learn
anything it didn’t already know

4

Prover Verifier

Zero-knowledge proofs [GMR89,BdSMP91]

...

I have
access

credentials
Okay

Soundness: system won’t accept
incorrect proof

Zero-knowledge: system won’t learn
anything it didn’t already know

anonymous
onion routing

deniable
authentication

electronic
voting

blind
signatures

fair exchange
anonymous
credentials

group
signatures

multi-party
computation

non-
transferable
signatures

verifiable
encryption

verifiable
secret sharing

electronic cash

4

Prover Verifier

Zero-knowledge proofs [GMR89,BdSMP91]

...

I have
access

credentials
Okay

Soundness: system won’t accept
incorrect proof

Zero-knowledge: system won’t learn
anything it didn’t already know

anonymous
onion routing

deniable
authentication

electronic
voting

blind
signatures

fair exchange
anonymous
credentials

group
signatures

multi-party
computation

non-
transferable
signatures

verifiable
encryption

verifiable
secret sharing

electronic cash

4

Prover Verifier

Zero-knowledge proofs [GMR89,BdSMP91]

...

I have
access

credentials
Okay

Soundness: system won’t accept
incorrect proof

Zero-knowledge: system won’t learn
anything it didn’t already know

anonymous
onion routing

deniable
authentication

electronic
voting

blind
signatures

fair exchange
anonymous
credentials

group
signatures

multi-party
computation

non-
transferable
signatures

verifiable
encryption

verifiable
secret sharing

Zero-knowledge proofs have applications, but can be complex

electronic cash

4

Prover Verifier

Implementing zero knowledge (take 1)

Zero knowledge

P2P file sharing

Crypto Systems

5

Implementing zero knowledge (take 1)

Zero knowledge

P2P file sharing

Crypto Systems

Our first attempt: write library from scratch

5

Implementing zero knowledge (take 1)

Zero knowledge

P2P file sharing

Crypto Systems

Our first attempt: write library from scratch

5

Implementing zero knowledge (take 1)

Zero knowledge

P2P file sharing

Crypto Systems

Our first attempt: write library from scratch

}

5

Implementing zero knowledge (take 1)

Zero knowledge

P2P file sharing

Crypto Systems

Our first attempt: write library from scratch

e-cash
library}

5

Implementing zero knowledge (take 1)

Zero knowledge

P2P file sharing

Crypto Systems

Our first attempt: write library from scratch

• Not reusable

• Time-consuming

• Error prone

e-cash
library}

5

Implementing zero knowledge (take 1)

6

Implementing zero knowledge (take 1)

• Lesson learned: even though you know the math, coding can get messy

6

Implementing zero knowledge (take 1)

• Lesson learned: even though you know the math, coding can get messy

Coin::Coin(const BankParameters *params, int stat, int lx,
hashalg_t hashAlg, const ZZ &coinIndex, const ZZ
&walletSize, int coinDenom, const ZZ &sk_u, const ZZ &s,
const ZZ &t, const vec_ZZ &clSig, const vector<SecretValue>
&clPrivateSecrets, const vector<SecretValue>
&clPrivateRandoms, const ZZ &r) { ...

6

Implementing zero knowledge (take 1)

• Lesson learned: even though you know the math, coding can get messy

• Functionality is there, but not easy to use

Coin::Coin(const BankParameters *params, int stat, int lx,
hashalg_t hashAlg, const ZZ &coinIndex, const ZZ
&walletSize, int coinDenom, const ZZ &sk_u, const ZZ &s,
const ZZ &t, const vec_ZZ &clSig, const vector<SecretValue>
&clPrivateSecrets, const vector<SecretValue>
&clPrivateRandoms, const ZZ &r) { ...

6

Implementing zero knowledge (take 2)

Zero knowledge

P2P file sharing

Crypto Systems

e-cash
library}

7

Implementing zero knowledge (take 2)

Zero knowledge

P2P file sharing

Crypto Systems

e-cash
library

How can we lighten the implementation load?

}

7

Implementing zero knowledge (take 2)

Zero knowledge

P2P file sharing

Crypto Systems

e-cash
library

How can we lighten the implementation load?

• Design a language: ZKPDL (Zero Knowledge Proof Description Language)

• Build an interpreter to automatically translate from ZKPDL to proofs

}

7

Implementing zero knowledge (take 2)

Zero knowledge

P2P file sharing

Crypto Systems

e-cash
library

How can we lighten the implementation load?

• Design a language: ZKPDL (Zero Knowledge Proof Description Language)

• Build an interpreter to automatically translate from ZKPDL to proofs

} interpreter

7

Step 1: writing programs in ZKPDL

8

High-level language, goal was to mirror theoretical descriptions

Step 1: writing programs in ZKPDL

Description in paper

8

High-level language, goal was to mirror theoretical descriptions

Step 1: writing programs in ZKPDL

computation:
 ...

compute:
S := g^(1/(s+x+1))
T := g^u * (g^(1/(t+x+1)))^R

proof:
given:

group: G = <g,h>
elements in G: S, T

prove knowledge of:
exponents in G: u,s,t,x
integer: J

such that:
range: 0 <= J < n
S = g^(1/(s+x+1))

Description in paper Description in ZKPDL

8

High-level language, goal was to mirror theoretical descriptions

Step 1: writing programs in ZKPDL

computation:
 ...

compute:
S := g^(1/(s+x+1))
T := g^u * (g^(1/(t+x+1)))^R

proof:
given:

group: G = <g,h>
elements in G: S, T

prove knowledge of:
exponents in G: u,s,t,x
integer: J

such that:
range: 0 <= J < n
S = g^(1/(s+x+1))

Description in paper Description in ZKPDL

8

High-level language, goal was to mirror theoretical descriptions

Step 1: writing programs in ZKPDL

computation:
 ...

compute:
S := g^(1/(s+x+1))
T := g^u * (g^(1/(t+x+1)))^R

proof:
given:

group: G = <g,h>
elements in G: S, T

prove knowledge of:
exponents in G: u,s,t,x
integer: J

such that:
range: 0 <= J < n
S = g^(1/(s+x+1))

Currently support four ZKP types, enough for vast majority of applications

Should also be easy to add new types if they’re needed

Description in paper Description in ZKPDL

8

High-level language, goal was to mirror theoretical descriptions

Sample usage of the interpreter

I have
access

credentials

9

Prover Verifier

Sample usage of the interpreter

Interpreter Interpreter

ZKPDL
program

9

Prover Verifier

Sample usage of the interpreter

Interpreter Interpreter

• At compile time, check program syntax, types, etc.

ZKPDL
program

9

Prover Verifier

Sample usage of the interpreter

Interpreter Interpreter

public
valuessecret

values

• At compile time, check program syntax, types, etc.

• At run time, need all values to be proved

9

Prover Verifier

Sample usage of the interpreter

Interpreter Interpreter

public
valuessecret

values

• At compile time, check program syntax, types, etc.

• At run time, need all values to be proved

9

Prover Verifier

Sample usage of the interpreter

PROOF

Interpreter Interpreter

public
valuessecret

values

• At compile time, check program syntax, types, etc.

• At run time, need all values to be proved

9

Prover Verifier

Sample usage of the interpreter

PROOF

Interpreter Interpreter

public
valuessecret

values

• At compile time, check program syntax, types, etc.

• At run time, need all values to be proved

9

Prover Verifier

Sample usage of the interpreter

PROOF

Interpreter Interpreter

public
valuessecret

values

• At compile time, check program syntax, types, etc.

• At run time, need all values to be proved

9

Prover Verifier

Sample usage of the interpreter

PROOF

Interpreter Interpreter /

public
valuessecret

values

• At compile time, check program syntax, types, etc.

• At run time, need all values to be proved

9

Prover Verifier

Step 2: using the interpreter to write a library

10

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter

10

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter

Interpreter

program

10

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter

Interpreter

publics
secrets

10

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter

PROOF

Interpreter

publics
secrets

10

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter
Proof MyZKP::prove(group_map g, variable_map v,

 string program) {
 InterpreterProver p;
 p.check(program);

 p.compute(g,v);
 return p.prove();
}

10

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter

• Specify crypto protocol of choice in the program string

Proof MyZKP::prove(group_map g, variable_map v,
 string program) {

 InterpreterProver p;
 p.check(program);

 p.compute(g,v);
 return p.prove();
}

10

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter

• Specify crypto protocol of choice in the program string

• Feed numeric values in and you’re done!

Proof MyZKP::prove(group_map g, variable_map v,
 string program) {

 InterpreterProver p;
 p.check(program);

 p.compute(g,v);
 return p.prove();
}

10

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter

• Specify crypto protocol of choice in the program string

• Feed numeric values in and you’re done!

Solves issues of reusability and of time

Proof MyZKP::prove(group_map g, variable_map v,
 string program) {

 InterpreterProver p;
 p.check(program);

 p.compute(g,v);
 return p.prove();
}

10

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter

• Specify crypto protocol of choice in the program string

• Feed numeric values in and you’re done!

Solves issues of reusability and of time

Took 3-4 months to build interpreter, then one month to reconstruct library

Proof MyZKP::prove(group_map g, variable_map v,
 string program) {

 InterpreterProver p;
 p.check(program);

 p.compute(g,v);
 return p.prove();
}

10

Optimizations: caching

In addition to usability, can achieve improvements in efficiency

11

Optimizations: caching

In addition to usability, can achieve improvements in efficiency

11

Have optimizations built into the interpreter

Optimizations: caching

In addition to usability, can achieve improvements in efficiency

11

Have optimizations built into the interpreter

• Cache powers of bases used for modular exponentiation

Often have g^x*h^r mod N, numbers are 1000 bits long!

Use common single- and multi-exponentiation techniques

Optimizations: caching

In addition to usability, can achieve improvements in efficiency

11

Have optimizations built into the interpreter

• Cache powers of bases used for modular exponentiation

Often have g^x*h^r mod N, numbers are 1000 bits long!

Use common single- and multi-exponentiation techniques

• Save copy of interpreter state after compilation

Did caching help?

12

On the prover side, saw about a 50% speed-up using all optimizations

On the verifier side, about 30% (less computation)

Did caching help?

12

On the prover side, saw about a 50% speed-up using all optimizations

On the verifier side, about 30% (less computation)

Did caching help?

12

On the prover side, saw about a 50% speed-up using all optimizations

On the verifier side, about 30% (less computation)

Case study: using ZKPDL for e-cash

13

Zero knowledge

P2P file sharing

Crypto Systems

e-cash
library} interpreter

Case study: using ZKPDL for e-cash

13

Zero knowledge

P2P file sharing

Crypto Systems

e-cash
library} interpreter

Case study: using ZKPDL for e-cash

13

Zero knowledge

P2P file sharing

Crypto Systems

e-cash
library} interpreter

Case study: using ZKPDL for e-cash

13

Zero knowledge

P2P file sharing

Crypto Systems

e-cash
library} interpreter

Case study: using ZKPDL for e-cash

13

E-cash was originally developed [Ch82] as replacement for currency

Now, view e-cash in context of token systems

• Our usage in P2P file-sharing schemes [BCE+07]

• Provides anonymous transportation ticketing (future work)

Zero knowledge

P2P file sharing

Crypto Systems

e-cash
library} interpreter

How e-cash works [Ch82, CHL05, CLM07]

14

How e-cash works [Ch82, CHL05, CLM07]

14

Withdraw: Alice gets coins from bank

How e-cash works [Ch82, CHL05, CLM07]

14

Withdraw: Alice gets coins from bank

How e-cash works [Ch82, CHL05, CLM07]

14

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

How e-cash works [Ch82, CHL05, CLM07]

14

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

How e-cash works [Ch82, CHL05, CLM07]

14

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

How e-cash works [Ch82, CHL05, CLM07]

14

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

Unlinkability: if Alice spends twice, Bob won’t even know it’s the same person

How e-cash works [Ch82, CHL05, CLM07]

14

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

Unlinkability: if Alice spends twice, Bob won’t even know it’s the same person

Deposit: Bob deposits these coins with the bank

How e-cash works [Ch82, CHL05, CLM07]

14

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

Unlinkability: if Alice spends twice, Bob won’t even know it’s the same person

Deposit: Bob deposits these coins with the bank

How e-cash works [Ch82, CHL05, CLM07]

14

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

Unlinkability: if Alice spends twice, Bob won’t even know it’s the same person

Deposit: Bob deposits these coins with the bank

Untraceability: Bank cannot trace the deposited coins back to Alice

CashLib: integrating e-cash into a P2P system

15

CashLib: integrating e-cash into a P2P system

15

CashLib: integrating e-cash into a P2P system

15

Operations: Actors:

How e-cash can improve P2P interactions:

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

Actors:

How e-cash can improve P2P interactions:

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

Actors:

• Buyer

• Seller

How e-cash can improve P2P interactions:

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

Actors:

• Buyer

• Seller

How e-cash can improve P2P interactions:

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

Actors:

• Buyer

• Seller

How e-cash can improve P2P interactions:

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

Actors:

• Buyer

• Seller

How e-cash can improve P2P interactions:

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

Actors:

• Buyer

• Seller

How e-cash can improve P2P interactions:

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

Actors:

• Buyer

• Seller

How e-cash can improve P2P interactions:

• Guarantees fair exchange [BCE+07,KL10] between peers

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

• Barter

Actors:

• Buyer

• Seller

How e-cash can improve P2P interactions:

• Guarantees fair exchange [BCE+07,KL10] between peers

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

• Barter

• Withdraw

Actors:

• Buyer

• Seller

How e-cash can improve P2P interactions:

• Guarantees fair exchange [BCE+07,KL10] between peers

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

• Barter

• Withdraw

Actors:

• Buyer

• Seller

• Bank

• Peer

How e-cash can improve P2P interactions:

• Guarantees fair exchange [BCE+07,KL10] between peers

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

• Barter

• Withdraw

• Deposit

Actors:

• Buyer

• Seller

• Bank

• Peer

How e-cash can improve P2P interactions:

• Guarantees fair exchange [BCE+07,KL10] between peers

CashLib: integrating e-cash into a P2P system

15

Operations:

• Buy

• Barter

• Withdraw

• Deposit

Actors:

• Buyer

• Seller

• Bank

• Peer

How e-cash can improve P2P interactions:

• Guarantees fair exchange [BCE+07,KL10] between peers

• Allows bank to monitor upload/download ratio without sacrificing privacy

Related work

16

Related work

16

So what aren’t we doing?

Related work

16

So what aren’t we doing?

• Aren’t guaranteeing anything about the quality of the proofs

You give us a bad (e.g., not sound) proof, get a bad proof back

Checking soundness is well studied by others [CACE]

Related work

16

So what aren’t we doing?

• Aren’t guaranteeing anything about the quality of the proofs

You give us a bad (e.g., not sound) proof, get a bad proof back

Checking soundness is well studied by others [CACE]

• As application of zero knowledge, provide library only for e-cash

Idemix project [CH02, BBC+09] provides anonymous credentials

In summary...

• Wrote interpreter to make cryptographer’s job easier

• Demonstrated efficiency and usability

• Wrote library to make programmer’s job easier

• All source code and documentation available freely online:

• http://github.com/brownie/cashlib

17

http://github.com/brownie/cashlib
http://github.com/brownie/cashlib

In summary...

• Wrote interpreter to make cryptographer’s job easier

• Demonstrated efficiency and usability

• Wrote library to make programmer’s job easier

• All source code and documentation available freely online:

• http://github.com/brownie/cashlib

Any questions?
17

http://github.com/brownie/cashlib
http://github.com/brownie/cashlib

Zero knowledge proof types

• What types of proofs do we support?

• Proof of discrete log representation (DLR): given c, prove c = g^x*h^r

• Equality of DLR: given c and d, prove c = g^x*h^r and d = g^x*h^s

• Multiplication: prove x = y*z for secret values x, y, z

• Range: for secret x and public lo, hi, prove lo <= x < hi

18

