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Abstract
In recent years, privacy-preserving toll collection has been
proposed as a way to resolve the tension between the de-
sire for sophisticated road pricing schemes and drivers’
interest in maintaining the privacy of their driving pat-
terns. Two recent systems in particular, VPriv (USENIX
Security 2009) and PrETP (USENIX Security 2010), use
modern cryptographic primitives to solve this problem. In
order to keep drivers honest in paying for their usage of
the roads, both systems rely on unpredictable spot checks
(e.g., by hidden roadside cameras or roaming police vehi-
cles) to catch potentially cheating drivers.

In this paper we identify large-scale driver collusion
as a threat to the necessary unpredictability of these spot
checks. Most directly, the VPriv and PrETP audit pro-
tocols both reveal to drivers the locations of spot-check
cameras — information that colluding drivers can then
use to avoid paying road fees. We describe Milo, a new
privacy-preserving toll collection system based on PrETP,
whose audit protocol does not have this information leak,
even when drivers misbehave and collude. We then evalu-
ate the additional cost of Milo and find that, when com-
pared to naïve methods to protect against cheating drivers,
Milo offers a significantly more cost-effective approach.

1 Introduction
Assessing taxes to drivers in proportion to their use of
the public roads is a simple matter of fairness, as road
maintenance costs money that drivers should expect to
pay some part of. Gasoline taxes, currently a proxy for
road use, are ineffective for implementing congestion
pricing for city-center or rush-hour traffic. At the same
time, the detailed driving records that would allow for
such congestion pricing also reveal private information
about drivers’ lives, information that drivers do seem to
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have interest in keeping private. (In the U.S., for example,
some courts have recognized drivers’ privacy interests by
forbidding the police from using a GPS device to record
a driver’s movements without a search warrant [1].)

The VPriv [38] and PrETP [4] systems for private
tolling, proposed at USENIX Security 2009 and 2010
respectively, attempt to use modern cryptographic pro-
tocols to resolve the tension between sophisticated road
pricing and driver privacy. At the core of both these sys-
tems is a monthly payment and audit protocol. In her
payment, each driver commits to the road segments she
traversed over the month and the cost associated with each
segment, and reveals the total amount she owes. The prop-
erties of the cryptography used guarantee that the total is
correct assuming the segments driven and their costs were
honestly reported, but that the specific segments driven
are still kept private.

To ensure honest reporting, the systems use an audit-
ing protocol: throughout the month, roadside cameras
occasionally record drivers’ locations; at month’s end,
the drivers are challenged to show that their committed
road segments include the segments in which they were
observed, and that the corresponding prices are correct.
So long as such spot checks occur unpredictably, drivers
who attempt to cheat will be caught with high probability
given even a small number of auditing cameras. In the
audit protocols for both VPriv and PrETP, however, the
authority reveals to each driver the locations at which
she was observed. (The driver uses this information to
open the appropriate cryptographic commitments.) If the
cameras aren’t mobile, or are mobile but can be placed
in only a small set of suitable locations (e.g., overpasses
or exit signs along a fairly isolated highway), then the
drivers will easily learn where the cameras are (and, per-
haps more importantly, where they aren’t). Furthermore,
if drivers collude and share the locations at which they
were challenged, then a few audit periods will suffice
for colluding drivers to learn and map the cameras’ loca-
tions.
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We believe the model of large-scale driver collusion is
a realistic one. For example, drivers already collaborate
to share the locations of speed cameras [36] and red-light
cameras [37]; if we extend this behavior to consider maps
of audit cameras, then we see that the unpredictable spot
checks required in the analysis of VPriv and PrETP are
difficult to achieve in the real world when drivers may col-
lude on a large scale. When drivers know where cameras
are (and where they aren’t), they will not pay for segments
that are camera-free, and may even change driving pat-
terns to avoid the cameras. By collaborating, drivers can
discover and share camera locations at acceptable cost;
in fact, if the cameras are revealed to them directly in the
course of the audit protocol then they can do so without
incurring a single fine.

Finally, one might argue that an appropriate placement
of audit cameras at chokepoints will make them impos-
sible to avoid, even if their location is known; the price
charged for traversing such a chokepoint could then be
made sufficiently high that it subsidizes the cost of main-
taining other, unaudited road segments. This alternative
arrangement may seem superficially appealing, but it is
ultimately incompatible with driver privacy. If drivers
cannot avoid a chokepoint they cannot but be observed
by authorities when they cross it; in other words, this
approach would be feasibly enforceable only when most
drivers are regularly observed at the chokepoints. In fact,
what we have described is precisely the situation today
in many cities, where tolls are collected on bridges and
other unavoidable chokepoints.

Our contribution We show, in Section 4, how to mod-
ify the PrETP system to obtain our own system, Milo,
in which the authority can perform an agreed-upon num-
ber of spot checks of a driver’s road-segment commit-
ments without revealing the locations being checked. To
achieve this, we adapt a recent oblivious transfer proto-
col due to Green and Hohenberger [28] that is based on
blind identity-based encryption. We have implemented
and benchmarked our modifications to the audit protocol,
showing (in Section 5) that they require a small amount
of additional work for each driver and a larger but still
manageable amount of work for the auditing authority.

Basic fairness demands that drivers whom the authority
accuses of cheating be presented with the evidence against
them: a photo of their car at a time and location for
which they did not pay. This means that drivers who
intentionally incur fines will inevitably learn some camera
locations; in some cases, a large coalition of drivers may
therefore profitably engage in such misbehavior. Here the
information about camera locations is leaked not by the
audit protocol but by the legal proceedings that follow it.

Finally, if the cameras are themselves visible then
drivers will discover and share their locations, regardless

of the cryptographic guarantees of the audit protocol.1

All that is necessary is for one driver to spot the camera
at any point during the month; the colluding drivers can
then ensure that their commitments take this camera into
account. We discuss this further in Section 6.

In summary, our paper makes three concrete contribu-
tions:

• we identify large-scale driver collusion as a realistic
threat to privacy-preserving tolling systems;

• we modify the PrETP system to avoid leaking cam-
era locations to drivers during challenges; and

• we identify and evaluate other ways to protect
against driver collusion and compare their costs to
that of Milo.

2 System Outline
In this section we present an overview of the Milo system.
We discuss both the organizational structure of the system,
as well as the security goals it is able to achieve. As
our system is built directly on top of PrETP we have
approximately maintained its structure, with the important
differences highlighted below.

2.1 Organization
Milo consists of three main players: the driver, repre-
sented by an On-Board Unit (OBU); the company operat-
ing the OBU (abbreviated TSP, for Toll Service Provider);
and finally the local government (or TC, for Toll Charger)
responsible for setting the road prices and collecting the
final tolls from the TSP, as well as for ensuring fairness
on the part of the driver. The interactions between these
parties can be seen in Figure 1.

In some respects, the organization of Milo is similar
to that of current toll collection systems. The driver will
keep a certain amount of money in an account with the
TSP; at the end of every month the driver will then pay
some price appropriate for how much she drove and the
amount of money remaining in the account will need to
be replenished. The major difference, of course, is that
the payments of the driver do not reveal any information
about their actual locations while driving.2 In addition, we
will require that the TC perform occasional spot checks
to guarantee that drivers are behaving honestly.

The OBU is a box installed in the car of the driver,
which is responsible for collecting location information,
computing the prices associated with the roads, and form-
ing the final payment information that is sent to the TSP

1De Jonge and Jacobs [19] appear to have been the first to note that
unobservable cameras are crucial for random spot checks.

2As also noted by Balasch et al. [4], the pricing structure itself
may of course reveal driver locations — e.g., if segment i costs 2i (see
Section 4), then all drivers’ paths are revealed by cost alone. This will
likely not be a problem in practice.

2



Figure 1: An overview of how the Milo system works.
As we can see, the OBU deals with the TSP for payment
purposes (using the Pay protocol), but for spot checks it
interacts with the TC (using the Audit protocol). The TC
conducts these audits using both the information recorded
by the cameras it operates along the roads and the OBU’s
payment information, which is forwarded on from the
TSP after it has been checked to be correct (using the
VerifyPayment protocol).

at the end of each month. Its work in this stage is de-
scribed formally in our Pay algorithm, which we present
in Section 4.

The TSP is responsible for the collection of tolls from
the driver. At the end of each month, the TSP will receive
a payment message from the OBU as specified above. It
is then the job of the TSP to verify that this payment in-
formation is correct, using the VerifyPayment algorithm
outlined in Section 4. If the payment information is found
to be correctly formed then the TSP can debit the appro-
priate payment from the user’s account; otherwise, they
can proceed in a legal manner that is similar to the way in
which traffic violations are handled now.

The TC, as mentioned, is the local government respon-
sible for setting the prices on the roads, as well as the
fines for dishonest drivers who are caught. The TC is
also responsible for performing spot checks to ensure that
drivers are behaving honestly. Although this presents a
new computational burden for the TC (as compared to
PrETP, for example, which has the TSP performing the
spot checks), we believe that it is important to keep all lo-
cation information completely hidden from the TSP, as it
is a business with incentive to sell this information. Since
the TC already sees where each car is driving regardless
of which body performs the spot checks (since it is the
one operating the cameras), having it perform the audits
itself minimizes the privacy lost by the driver.

Note, however, that the formal guarantees of correct-
ness, security, and privacy provided by our system do not
depend on having the TSP and TC not collaborate. In fact,

both roles could be performed by a single organization.
Since in practice businesses such as E-ZPass play the role
of TSP, we recommend the separation of duties above to
avoid giving the TSP an incentive to monetize customers’
driving records. Of course, this assumes that regulation
or the courts will forbid the government from misusing
the information it collects.

2.2 Security model
In any privacy-preserving system, there are two goals
which are absolutely essential to the success of the sys-
tem: maintaining privacy, while still keeping users of the
system honest. We discuss what this means in the context
of electronic toll collection in the following two points:

• Driver privacy: Drivers should be able to keep their
locations completely hidden from any other drivers
who may want to intercept (and possibly modify)
their payment information on its way to the TSP.
With the exception of the random spot checks per-
formed by the audit authority (in our case the TC),
the locations of the driver should also be kept pri-
vate from both the TC and the TSP. This property
should hold even for a malicious TSP; as for the TC,
we would like to guarantee that, as a result of the
audit protocol, it learns only whether the driver was
present at certain locations and times of its choice,
even if it is malicious. The number of these locations
and times about which the TC can query is fixed and
a parameter of the audit protocol. An honest-but-
curious TC will query the driver at those locations
and times where she was actually observed, but a
malicious TC might query for locations where no
camera was present; see Section 4.3 for further dis-
cussion.

• Driver honesty: Drivers should not be able to tam-
per with the OBU to produce incorrect location or
price information; i.e., pretending they were in a
given location, using lower prices than are actually
assigned, or simply turning off the OBU to pretend
they drove less than they actually did. This property
should hold even if drivers are colluding with other
dishonest drivers, and should in fact hold even if
every driver in the system is dishonest.

These security goals should look fairly similar to those
outlined in previous work (e.g., PrETP or VPriv [38],
and inspired by the earlier work of Blumberg, Keeler,
and shelat [8]), but we note the consideration of possibly
colluding drivers as an essential addition. We also note
that we do not consider physical attacks (i.e., a malicious
party gaining physical access to a driver’s car) in this
model, as we believe these attacks to be out of scope.
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For ideal privacy, the locations of each driver would
be kept entirely private even from the TC. This does not
seem to be possible, however, as it would allow drivers to
behave dishonestly without any risk of getting caught. Be-
cause each camera does take away some degree of privacy
from the driver, we would like to minimize the number of
cameras operated by the TC; at the same time, we need
to keep it high enough so that the TC will have a very
good chance of catching any cheating drivers. We believe
this to be a fundamental limitation on the value of any
privacy-preserving tolling system, however, as they are
privacy preserving only when the spot-check cameras do
not monitor such a large fraction of trips that the records
themselves constitute a substantial privacy violation. As
Blumberg, Keeler, and shelat write, “Extensive camera
networks are simply not compatible with the kinds of pri-
vacy we demand since they collect too much information.
If misused, they can provide adequate data for real-time
tracking of vehicles” [8].

Finally, we note that these security properties are both
achieved by Milo, under the assumption that cameras are
randomly placed and invisible to drivers (i.e., the only
way camera locations can leak to drivers is during the
audit protocol). We discuss the potential issues with this
assumption in Section 6.

3 Cryptographic Background
Because our scheme follows closely the PrETP construc-
tion [4], we employ the same modern cryptographic
primitives as they do: commitment schemes and zero-
knowledge proofs, in addition to the more familiar primi-
tive of digital signatures [26]. In addition, to keep the spot-
check camera locations hidden from drivers, we make use
of another primitive, blind identity-based encryption, in a
manner that is inspired by the oblivious transfer protocol
of Green and Hohenberger [28].

3.1 Commitments
A commitment scheme is essentially the cryptographic
relative of an envelope, and consists of two main phases:
forming the commitment and opening the commitment.
First, to form a commitment to a certain value, a user
Alice can put the value in the envelope and then seal
the envelope; to keep the analogy going, let’s also as-
sume she sealed it in some special way such that only
she can open it. The sealed envelope then acts as her
commitment, which she can send on to another user Bob.
When the time comes, Alice can reveal the committed
value by opening the envelope and showing Bob its con-
tents. There are two properties that commitment schemes
satisfy: hiding and binding. The hiding property says
that, because Alice is the only one who can unseal the
envelope, Bob will not be able to learn any information
about its contents before she reveals them. In addition,

the binding property says that, because the envelope is
sealed, Alice will not be able to open it, change the value
inside, and give it back to Bob without him noticing. In
other words, when Alice finally reveals the opening of
the commitment, Bob can be satisfied that those were
the values inside all along. We will use the notation
c = Com(m;r) to mean that c is a commitment to the
message m using some randomness r. (Note that there
are also some parameters involved, but that here and
in the primitives that follow we omit them for simplic-
ity.)

One more property we will require of our commitment
schemes is that they are additively homomorphic. This
means that there is an operation on commitments, call
it �, such that if c1 is a commitment to m1 and c2 is a
commitment to m2, then c1 � c2 will be a commitment to
m1 +m2. This property can be achieved by a variety of
schemes; to best suit our purposes, we work with Fujisaki-
Okamoto commitments [18, 22], which rely on the Strong
RSA assumption for their security.

3.2 Zero-knowledge proofs

Our second primitive, zero-knowledge proofs [24, 25],
provides a way for someone to prove to someone else
that a certain statement is true without revealing anything
beyond the validity of the statement. For example, a user
of a protected system might want to prove the statement “I
have the password corresponding to this username” with-
out revealing the password itself. The two main prop-
erties of zero-knowledge proofs are soundness and zero
knowledge. Soundness guarantees that the verifier will
not accept a proof for a statement that is false; in the
above example, this means that the system will accept the
proof only if the prover really does have the password.
Zero knowledge, on the other hand, protects the prover’s
privacy and guarantees that the system in our example
will not learn any information about the password itself,
but only that the statement is true. A non-interactive
zero-knowledge proof (NIZK for short) is a particularly
desirable type of proof because, as the name indicates,
it does not require any interaction between the prover
and the verifier. For a given statement S, we will use the
notation π = NIZKProve(S) to mean a NIZK formed by
the prover for the statement S. Similarly, we will use
NIZKVerify(π,S) to mean the process run by the verifier
to check, using π , that S is in fact true. In our system
we will need to prove only one type of statement, often
called a range proof, which proves that a secret value x
satisfies the inequality lo ≤ x < hi, where lo and hi are
both public. For this we can use Boudot range proofs
and their extensions [11, 34], which are secure in the
random oracle model [6] and assuming the Strong RSA
assumption.
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3.3 Blind identity-based encryption

Finally, to maintain driver honesty even in the case of
possible collusions between drivers (as discussed in Sec-
tion 2), we use an additional cryptographic primitive:
identity-based encryption [10, 41]. Intuitively, identity-
based encryption (IBE for short) extends the notion of
standard public-key encryption by allowing a user’s pub-
lic key to be, rather than just a random collection of bits,
some meaningful information relevant to their identity;
e.g., their e-mail address. This is achieved through the
use of an authority, who possesses some master secret key
msk and can use it to provide secret keys corresponding
to given identities on request (provided, of course, that
the request comes from the right person). When we work
with IBE, we will use the syntax C = IBEnc(id;m) to
mean an identity-based encryption of the message m, in-
tended for the person specified in the identity id. We will
similarly use m = IBDec(skid;C) to mean the decryption
of C using the secret key for the identity id.

Because of how IBE is integrated into our system, we
will need the IBE to be augmented by a blind extraction
protocol: a protocol interaction between a user and the
authority at the end of which the user obtains the secret
key corresponding to some identity of her choice, but
the authority does not learn which identity was requested
(and also does not learn the secret key for that identity).
This process of getting the secret key will be denoted as
skid = BlindExtract(id), keeping in mind that the author-
ity learns neither id nor skid. As we show in Section 4,
this property (introduced by Green and Hohenberger [28])
is crucial for guaranteeing that drivers do not learn where
the TC has its cameras.

Furthermore, we would like our IBE to be anony-
mous [2], meaning that given a ciphertext C, a user cannot
tell which identity the ciphertext is meant for (so, in par-
ticular, they cannot check to see if a guess is correct).
Again, as we show in Section 4, this property is necessary
to ensure that the TSP cannot simply guess and check
where the driver was at a given time, and thus potentially
learn information about her whereabouts.

To the best of our knowledge, there are two blind and
anonymous IBEs in the cryptographic literature: the first
due to Camenisch, Kohlweiss, Rial, and Sheedy [13]
and the second to Green [27]; both are blind variants on
the Boyen-Waters anonymous IBE [12]. While either of
these schemes would certainly work for our purposes,
we chose to come up with our own scheme in order to
maximize efficiency. Our starting point is the Boneh-
Franklin IBE [10], which is already anonymous [2, Sec-
tion 4.5]. We then introduce a blind key-extraction pro-
tocol for Boneh-Franklin, based on the Boldyreva blind
signature [9]. Finally, we “twin” the entire scheme to es-
sentially run two copies in parallel; this is just to facilitate

a “Twin Diffie-Hellman” style security proof [15]. We
give a full description of our scheme in Appendix A, as
well as a proof of its security in a variant of the Green-
Hohenberger security model. Our IBE is conveniently
efficient, but we stress that the Milo system could be
instantiated with any provably secure IBE that is both
blind and anonymous (and in particular the schemes of
Camenisch et al. and Green which, while not as efficient
as our scheme, have the attractive properties that they
use significantly weaker assumptions and do not rely on
random oracles in their proofs of security).

In the broadest sense, our blind IBE can be viewed
as a special case of a secure two-party computation be-
tween the OBU and the TC, at the end of which the TC
learns whether or not the driver paid honestly for a given
segment, and the driver learns nothing (and in particular
does not learn which segment the TC saw her in). As
such, any efficient instantiation of this protocol as a se-
cure two-party computation would be sufficient for our
purposes. One promising approach, suggested by an anoy-
mous reviewer, uses an oblivious pseudorandom function
(OPRF for short) as a building block. With an OPRF, a
user with access to a seed k for a PRF f and another user
with input x can securely evaluate fk(x) without the first
user’s learning x or fk(x), and without the second user’s
learning the seed k; this can be directly applied to our set-
ting by treating the seed k as a value known by the OBU,
and the input x as the segment in which the TC saw the
driver. An efficient OPRF was recently given by Jarecki
and Liu [32]. Compared to our approach, the OPRFs of
Jarecki and Liu may require increased interaction (which
has implications for concurrent security) and potentially
more computation than ours.

4 Our Construction
In this section, we describe the various protocols used
within our system and how they meet the security goals
described in Section 2.2; we note that only Algorithm 4.3
substantially differs from what is used in PrETP. There
are three main phases we consider: the initialization of
the OBU, the forming and verifying of the payments per-
formed by the OBU and the TSP respectively, and the
audit between the TC and the OBU. Below, we will detail
the functioning of each of these algorithms; first, though,
we give some intuition for how our scheme works and
why the use of blind identity-based encryption means the
audit protocol does not leak the locations of spot-check
cameras to drivers.

In the audit protocol, the driver needs to show that her
actual driving is consistent with the fee she chose to pay.
To do this, she must upload her (claimed) driving history
to the TSP’s server; if she didn’t, the TSP would have
nothing to check the correctness of. Obviously, simply
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uploading this history in the clear would provide no pri-
vacy. The VPriv system sidesteps this by having the driver
upload the segments anonymously (using an anonymizing
service such as Tor [20]), accompanied by a “tag” that
will allow her to claim them as her own. We instead fol-
low PrETP in having the driver upload a commitment
of sorts to each of her segments. In addition, the driver
commits to the cost associated with each segment using
the additively homomorphic commitment scheme. Check-
ing that the total payment is the sum of the fees for each
committed segment is now easy: using the homomorphic
operation �, the TSP can compute a commitment to the
sum of the committed fees; the driver then provides the
opening of this sum commitment, showing that its value
is the fee she paid.3

What remains is to prove that the committed segments
the driver uploaded to the server are in fact the segments
she drove, and that the committed fee she uploaded along-
side each is in fact the fee charged for driving it. Fol-
lowing VPriv, PrETP, and de Jonge and Jacobs’ system
(see Section 7), we rely on spot check cameras. The TC’s
cameras observed the driver at a few locations over the
course of the month. It now challenges the driver to show
that these locations are among the committed segments,
and that the corresponding committed fees are correct. If
the driver cannot show a commitment that opens to one of
these spot check locations, she has been caught cheating;
if the spot check locations are unpredictable then a simple
probability analysis (see Section 6.1) shows that a cheat-
ing driver will likely be caught. In PrETP, the spot check
has the TC sending to the driver the locations and times
where she was observed; the driver returns the index and
opening of the corresponding committed segments. This,
of course, leaks the spot check locations to the driver. To
get around this, we must somehow transmit the appro-
priate openings to the TC without the driver finding out
which commitments are being opened.

Identity-based encryption allows us to achieve exactly
the requirement above. Along with each of her commit-
ments, the driver encrypts the opening of the commitment
using IBE; the identity to which a commitment is en-
crypted is the segment location and time. She sends these
encrypted openings to the TC along with the commit-
ments themselves. (Note that it is crucial the ciphertext
not reveal the identity to which it was encrypted, since
otherwise the TSP and TC would learn the driver’s entire
driving history. This is why we require an anonymous
IBE.) Now, if the TC had the secret key for the identity
corresponding to the place and time where the driver was
spotted, it could decrypt the appropriate ciphertext, ob-
tain the commitment opening value, and check that the

3There is a technicality here: range proofs are needed to prevent the
driver from artificially reducing the amount she owes by committing to
a few negative values. See Section 4.2 for more on this.

corresponding commitment was properly formed. But
the TC can’t ask the driver for the secret key, since this
would also leak the spot-check location. Instead, it en-
gages with the driver in a blind key-extraction protocol.
The TC provides as input the location and time of the spot
check and obtains the corresponding secret key without
the driver learning which identity (i.e., location and time)
was requested. By undertaking the blind extraction proto-
col only a certain number of times, the driver limits the
number of spot checks the TC can perform.

Note that this is essentially an oblivious transfer proto-
col; our solution is in fact closely related to the oblivious
transfer protocol of Green and Hohenberger [28], who
introduced blind IBE.

Before any of the three phases can take place, the TC
first decides on the segments used for payment and how
much each one actually costs. It starts by dividing each
road into segments of some appropriate length, for exam-
ple one city block in denser urban areas or one mile along
a highway in less congested areas. Because prices might
change according to time of day, the TC also decides on a
division of time into discrete quanta based on some “time
step” when a new segment must be recorded by the OBU
(even if the location endpoint has not yet been reached).
For example, if two location endpoints are set as Exit 17
and Exit 18 on a highway and the time step is set to be
a minute, then a driver traveling between these exits for
more than a minute will have segments with the same
location endpoints, but different time endpoints. In par-
ticular, if this driver starts at 22:00 and takes about three
minutes to get from one exit to the other, she will end up
with three segments:4

•
(
(exit 17,exit 18),(22:00,22:01)

)
;

•
(
(exit 17,exit 18),(22:01,22:02)

)
; and

•
(
(exit 17,exit 18),(22:02,22:03)

)
.

Each segment is of the form
(
(loc1, loc2),(time1, time2)

)
;

in the future, we denote these segments as (where,when),
where where represents the physical limits of the seg-
ment and when represents the particular time quantum
during which the driver was in the segment where. For
each of these segments, the TC will have assigned some
price; this can be thought of as a publicly available func-
tion f : (where,when)→ [0,M], where M is the maxi-
mum price assigned by the TC.

4.1 Initialization
Before any payments can be made, there are a number of
parameters that need to be loaded onto the OBU. To start,

4In practice, the segment information will of course be more detailed;
as a byproduct of using GPS anyway, each car will have access to precise
coordinate and time information (including date).
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the OBU will be given some unique value to identify itself
to the TSP; we refer to this value as tag. Because the OBU
will be signing all the messages it sends, it first needs to
generate a signing keypair (vktag,sktag); the public verifi-
cation key will need to be stored with both the TSP and
TC, while the signing key will be kept private. We will
also use an augmented version of the BlindExtract pro-
tocol (mentioned in Section 3.3) in which the OBU and
TC will sign their messages to each other, which means
the OBU will need to have the verification key for the
TC stored as well (alternatively, they could just commu-
nicate using a secure channel such as TLS). In addition,
the OBU will need to generate parameters for an IBE
scheme in which it possesses the master secret key msk,
as well as to load the parameters for the commitment and
NIZK schemes (note that it is important the OBU does
not generate these latter parameters itself, as otherwise
the driver would be able to cheat). Finally, the OBU will
also need to have stored the function f used to define road
prices.

4.2 Payments
Once the OBU is set up with all the necessary parame-
ters, it can begin making payments. As the driver travels,
the GPS picks up location and time information, which
can then be matched to segments (where,when). For
each of these segments, the OBU first computes the cost
for that segment as p = f (where,when). It then com-
putes a commitment c to this value p; we will refer to the
opening of this commitment as openc. Next, the OBU
computes an identity-based encryption C of the open-
ing openc along with a confirmation value 0λ , using the
identity id = (where,when). Finally, the OBU computes
a non-interactive zero-knowledge proof π that the value
contained in c is in the range [0,M]. This process is then
repeated for every segment driven, so that by the end
of the month the OBU will end up with a set of tuples{
(ci,Ci,πi)

}n
i=1. In addition to this set, the OBU will also

need to compute the opening openfinal for the commit-
ment cfinal = c1 � c2 � · · ·� cn; i.e., the opening for the
commitment to the sum of the prices, which effectively
reveals how much the driver owes. The OBU then cre-
ates the final message m =

(
tag,openfinal,

{
(ci,Ci,πi)

}
i

)
,

signs it to get a signature σm, and sends to the TSP the
tuple (m,σm). This payment process is summarized in
Algorithm 4.1. The parameter λ , set to 160 for 80-bit
security, is explained below.

Once the TSP has received this tuple, it first looks up
the verification key for the signature using tag. If it is
satisfied that this message came from the right OBU, then
it performs several checks; if not, it aborts and alerts
the OBU that something went wrong (i.e., the message
was manipulated in transit) and it should resend the tuple.
Next, it checks that each commitment ci was properly

Algorithm 4.1: Pay, run by the OBU

Input: segments
{
(wherei,wheni)

}n
i=1, identifier tag,

signing key sktag
forall 1≤ i≤ n do1

pi = f (wherei,wheni)2

ci = Com(pi;ri)3

Ci = IBEnc
(
(wherei,wheni);(pi;ri;0λ )

)
4

πi = NIZKProve(0≤ pi ≤M)5

openfinal =
(∑

i pi;
∑

i ri
)

6

m =
(
tag,openfinal,

{
(ci,Ci,πi)

}n
i=1

)
7

σm = Sign(sktag,m)8

return (m,σm)9

formed by acting as the verifier for the NIZK πi; if one of
these checks failed then it knows that the driver committed
to an incorrect price (for example, a negative price to try
to drive down her monthly bill). The TSP then performs
the homomorphic operation on the commitments to get
cfinal = c1 � c2 � · · ·� cn and checks that openfinal is the
opening for cfinal. If all these checks pass, the TSP can
debit pfinal (contained in openfinal) from the user’s account;
if not, something has gone wrong and the TSP can flag the
driver as suspicious and continue on to legal proceedings,
as is done with current traffic violations. This algorithm
is summarized in Algorithm 4.2.

In terms of privacy, the hiding property of the com-
mitment scheme and the zero knowledge property of
the NIZK scheme guarantee that the driver’s informa-
tion is being kept private from the TSP. Furthermore, the
anonymity of the IBE scheme guarantees that, although
the segments are used as the identity for the ciphertexts Ci,
the TSP will be unable to learn this information given just
these ciphertexts. In addition, some degree of honesty is
guaranteed. First, because the message was signed by the
OBU, the TSP can be sure that the tuple came from the
correct driver and not some other malicious driver trying
to pass herself off as someone else (or cause the first driver
to pay more than she owes). Furthermore, if all the checks
pass then the binding property of the commitment scheme
and the soundness property of the NIZK scheme guaran-
tee that the values contained in the commitments are to
valid prices and so the TSP can be somewhat convinced
that the price pfinal given by the driver is the correct price
she owes for the month. The TSP cannot, however, be
convinced yet that the driver did not simply turn off her
OBU or otherwise fake location or price information; for
this, it will need to forward the payment tuple to the TC,
which initiates the audit phase of the protocol.

4.3 Auditing
As we argued in Section 2.2, although the audit protocol
does take away some degree of privacy from the driver,
this small privacy loss is necessary to ensure honesty
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Algorithm 4.2: VerifyPayment, run by the TSP
Input: payment tuple (m,σm), verification key vktag
if SigVerify(vktag,m,σm) = 0 then1

return ⊥2

parse m as
(
tag,openfinal,

{
(ci,Ci,πi)

}n
i=1

)
3

forall 1≤ i≤ n do4

if NIZKVerify
(
(ci,πi),0≤ pi ≤M

)
= 0 then5

return suspicious6

cfinal = c1 � · · ·� cn7

if cfinal = Com(openfinal) then8

parse openfinal as (pfinal;rfinal)9

debit account for tag by pfinal10

return okay11

else12

return suspicious13

within the system. We additionally argued that the TC
should not reveal to the driver the locations of the cameras
and furthermore believe that the driver should not even
learn the number of cameras at which the TC saw her, as
even this information would give her opportunity to cheat
(for more on this see Section 6). We therefore assume
that the TC makes some fixed number of queries k for
every driver, regardless of whether or not it has in fact
seen the driver k times. To satisfy this assumption, if the
TC has seen the driver on more than k cameras, it will
just pick the first k (or pick k at random, it doesn’t matter)
and query on those. If it has seen the driver on fewer
than k cameras, we can designate some segment to be a
“dummy” segment, which essentially does not correspond
to any real location/time tuple. The TC can then query on
this dummy segment until it has made k queries in total;
because the part of the protocol in which the TC performs
its queries is blind, the OBU won’t know that it is being
queried on the same segment multiple times.

After the TSP has forwarded the OBU’s payment tu-
ple to the TC, the TC first checks that the message re-
ally came from the OBU (and not, for example, from
a malicious user or even the TSP trying to frame the
driver). As with the TSP, if this check fails then it can
abort the protocol and alert the OBU or TSP. It then ex-
tracts the tuples

{
(ci,Ci,πi)

}
from m and begins issuing

its random spot checks to ensure that the driver was not
lying about her whereabouts. This process is outlined
in Algorithm 4.3. Because there were a certain number
of cameras the driver passed, the TC will have a set of
tuples

{
(loci, timei)

}
of its own that correspond to the

places and times at which the TC saw the driver. First,
for every pair (loc, time), the TC will need to determine
which segment this pair belongs to; this then gives it
a set

{
(wherei,wheni)

}
of tuples that the driver would

have logged if they were behaving honestly (unless the
set has been augmented by the dummy segment as de-

scribed above, in which case the OBU clearly will not
have logged this segment).

After the TC has this set of tuples, it uses the identity-
based encryption C j contained within every tuple sent
by the OBU. Recall from Algorithm 4.1 that the iden-
tity corresponding to each encryption is the segment
(where j,when j), and that the encryption itself is of the
opening of the commitment c j (contained in the same
tuple), along with a confirmation value 0λ . Therefore, if
the TC can obtain the secret key skid from the OBU for
the identity id = (where j,when j), then it can successfully
decrypt the ciphertext and obtain the opening for the com-
mitment, which it can then use to check if the driver is
recording correct price information. Because the TC does
not know which ciphertext corresponds to which segment,
however, once the TC obtains this secret key it will then
need to attempt to decrypt each C j.

To prevent drivers from using a single commitment
to pay for two segments, we require that it be compu-
tationally difficult to find a ciphertext C that has valid
decryptions under two identities id1 and id2. For our IBE,
it is sufficient to encrypt a confirmation value 0λ along
with the message (where λ = 160 for 80-bit security),
since messages are blinded with a random oracle hash
that takes the identity as input. On decryption, one checks
that the correct confirmation value is present. Note that
we do not require CCA security.

If C j does decrypt properly for some j, then the TC
checks that the value contained inside is the opening of
the commitment c j. If it is, then the TC further checks that
the price p j is the correct price for that road segment by
computing f (where j,when j). If this holds as well, then
the TC can be satisfied that the driver paid correctly for
the segment of the road on which she was seen and move
on to the next camera. If it does not hold, then the TC
has reason to believe that the driver lied about the price
of the road she was driving on. If instead the opening
is not valid, the TC has reason to believe that the driver
formed either the ciphertext C j or the commitment c j
incorrectly. Finally, if none of the ciphertexts properly
decrypted using skid (i.e., C j did not decrypt for any value
of j), then the TC knows that the driver simply omitted the
segment (where j,when j) from her payment in an attempt
to pretend she drove less. In any of these cases, the
TC believes the driver was cheating in some way and
can undertake legal proceedings. If all of these checks
pass for every camera, then the driver has successfully
passed the audit and the TC is free to move on to another
user.

In terms of driver honesty, the addition of BlindExtract
allows the TC to obtain skid without the OBU learning the
identity, and thus the location at which they were caught
on camera. As argued in Section 2, this is absolutely cru-
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Algorithm 4.3: Audit, run by the TC
Input: payment tuple (m,σm), camera tuples

{(loci, timei)}k
i=1, verification key vktag

if SigVerify(vktag,m,σm) = 0 then1

return ⊥2

parse m as (tag,openfinal,{(c j,C j,π j)}n
j=1)3

forall 1≤ i≤ k do4

determine segment (wherei,wheni) for5

(loci, timei)
ski = BlindExtract(wherei,wheni)6

match = 07

forall 1≤ j ≤ n do8

m j = IBDec(ski;C j)9

if m j parses as (p j;r j;0λ ) then10

match = 111

if Com(m j) 6= c j then12

return suspicious13

if p j 6= f (wherei,wheni) then14

return suspicious15

break16

if match = 0 then17

return suspicious18

return okay19

cial for maintaining driver honesty, both individually and
in the face of possible collusions. In terms of privacy, if
the OBU and TC sign their messages in the BlindExtract
phase, then we can guarantee that no malicious third party
can alter messages in their interaction in an attempt to
learn the segment in which the driver was caught on cam-
era (or, alternatively, frame the driver by corrupting skid).
As mentioned in Section 2, whereas the cameras do take
away some part of the driver’s privacy, they are necessary
to maintain honesty; we also note that no additional in-
formation is revealed throughout the course of this audit
interaction provided both parties behave honestly. One
potential downside of this protocol, however, is that the
TC is not restricted to querying locations at which it had
cameras; it can essentially query any location it wants
without the driver’s knowledge (although the driver is at
least aware of how many queries are being made). We
believe that our system could be augmented to resist such
misbehavior through an “audit protocol audit protocol”
that requires the TC to demonstrate that it actually has
camera records corresponding to some small fraction of
the spot check it performs, much as its own audit protocol
requires the driver to reveal some small fraction of its
segments driven. This “audit audit” could be performed
on behalf of drivers by an organization such as EFF or
the ACLU; alternatively, in some legal settings an exclu-
sionary rule could be introduced that invalidates evidence
obtained through auditing authority misbehavior.

Time (ms)

Operation Laptop ARM

Creating parameters 75.12 1083.61
Encryption 82.11 1187.82
Blind extraction (user) 13.13 214.06
Blind extraction (authority) 11.21 175.25
Decryption 78.31 1131.58

Table 1: The average time, in milliseconds and over a run
of 10, for the various operations in our blind IBE protocol,
performed on both a MacBook Pro and an ARM v5TE.
The numbers for encryption and decryption represent the
time taken to encrypt/decrypt a pair of 1024-bit numbers
using the curve y2 = x3 + x mod p at the 80-bit security
level, and the numbers for blind extraction represent the
time to complete the computation required for each side
of the interactive protocol.

5 Implementation and Performance
In order to achieve a more effective audit protocol, an
extra computational burden is required for both the OBU
and the TC. In this section, we consider just how great this
additional burden is; in particular, we focus on our blind
identity-based encryption protocol from Appendix A, as
well as Algorithm 4.3 from Section 4.3. The bench-
marks presented for these protocols were collected on
two machines: a MacBook Pro running Mac OS X 10.6
with a 2.53GHz Intel Core 2 Duo processor and 4GB of
RAM, and an ARM v5TE running Linux 2.6.24 with a
520MHz processor and 128MB of RAM. We believe that
the former represents a fairly conservative estimate for
the amount of computational resources available to the
TC, whereas the latter represents a machine that could
potentially be used as an OBU. For the bilinear groups
needed for blind IBE we used the supersingular curve
y2 = x3 + x mod p for a large prime p (which has em-
bedding degree 2) within version 5.4.3 of the MIRACL
library [40], and for the NIZKs and commitments we
used ZKPDL (Zero-Knowledge Proof Description Lan-
guage) [35], which itself uses the GNU multi-precision
library [23] for modular arithmetic.

Table 1 shows the time taken for each of the unit oper-
ations performed within the IBE scheme. As mentioned
in Section 4, in the context of our system the creation
of the parameters will be performed when the OBU is
initialized, the encryption will be performed during the
Pay protocol (line 4 of Algorithm 4.1), and both blind
extraction and decryption will be performed in the audit
phase between the TC and the OBU (lines 6 and 9 of
Algorithm 4.3 respectively).

We consider the computational costs for the OBU and
the TC separately, as well as the communication overhead
for the whole system.5

5We do not consider the computational costs for the TSP here, as
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OBU computational costs. During the course of a
month (or however long an audit period is), the OBU is
required to spend time performing computations for two
distinct phases of the Milo protocol. The first phase is the
Pay protocol, which consists of computing the commit-
ments to segment prices, encrypting the openings of the
commitments, and producing a zero-knowledge proof that
the value in the commitment lies in the right range. From
Table 1, we know that encryption takes roughly a sec-
ond when encrypting 1024-bit number on the ARM. As
these correspond to “medium security” in PrETP [4, Ta-
ble 2], and our commitments and zero-knowledge proofs
are essentially identical to theirs, we can use the relevant
timings from PrETP to see that the total time taken for
the Pay protocol should be at most 20 seconds per seg-
ment. As long as the time steps are at least 20 seconds
and the segment lengths are at least half a mile (assuming
people drive at most 90 miles per hour), the calculations
can therefore be done in real time.

The second phase of computation is the end of the
month audit protocol. Here, the OBU is responsible for
acting as the IBE authority to answer blind extraction
queries from the TC. As we can see in Table 1, each
query takes the OBU approximately 175 milliseconds,
independent of the number of segments. If the TC makes
a small, fixed number of queries, say ten, for each vehicle,
then the OBU will spend only a few seconds in the Audit
protocol each month.

TC computational costs. In the course of the Audit
protocol, the TC has to perform a number of complex
calculations. In particular, the cost of challenging the
OBU for each camera is proportional to the number of
segments the OBU reported driving.

To obtain our performance numbers for the audit pro-
tocol, we considered the driving habits of an average
American, both in terms of time spent and distance driven.
For time, we assumed that an average user would have a
commute of 30 minutes each way, meaning one hour each
day, in addition to driving between two and three hours
each weekend. For distance, we assumed that an average
user would drive around 1,000 miles each month. While
we realize that these averages will vary greatly between
locations (for example, between a city and a rural area),
we believe that these measures still give us a relatively
realistic setting in which to consider our system.

Table 2 gives the time it takes for the TC to challenge
the OBU on a single segment for several segment lengths
and time steps; we can see that the time taken grows
approximately linearly with the number of segments.
To determine the number of segments, we considered

they are essentially the same as they were within PrETP; the numbers
they provide should therefore provide a reasonably accurate estimate
for the cost of the TSP within our system as well.

both fine-grained and coarse-grained approaches. For the
fine-grained approach, we considered a time step of one
minute. Using our assumptions about driving habits, this
means that in a 30-day month with 22 weekdays, our
average user will drive approximately 1,320 segments.
Adding on an extra 680 segments for weekends, we can
see that a user might accumulate up to 2,000 segments in
a month. In the way that road prices are currently decided,
however, a time step of one minute seems overly short, as
typically there are only two times considered throughout
the day: peak and off-peak. We therefore considered next
a time step of one hour, keeping our segment length at
1 mile. Here the number of miles driven determines the
number of segments rather than the minutes spent in the
car, and so we end up with approximately 1,000 segments
for the month. Finally, we considered a segment length
of 2 miles, keeping our time step at one hour; we can see
that this results in approximately half as many segments
as before, around 500 segments. Longer average physical
segment lengths would result in an even lower number of
segments (and therefore better performance).

Communication overhead. Looking at Table 3, we
can see that the size of a payment message is approxi-
mately 6kB per segment; furthermore, this size is domi-
nated by the NIZK (recall that each segment requires a
commitment, a NIZK, and a ciphertext), which accounts
for over 90% of the total size. For our parameter choices
in Table 2, this would result in a total payment size of
approximately 11MB in the worst case (with 2000 seg-
ments) and 3MB in the best case (with 500 segments).
In PrETP, on the other hand, the authors claim to have
sizes of only 1.5kB per segment [4, Section 4.3]. Using
their more compact segments with our ciphertexts added
on would therefore result in a segment size of only 2kB,
which means the worst-case size of the entire payment
message would be under 4MB (and the best-case size
approximately 1MB).

Finally, we can see that the overhead for the rest of the
Audit protocol is quite small: each blind IBE key sent
from the OBU to the TC is only 494 bytes; if the TC
makes ten queries per audit, then the total data transferred
in the course of the protocol is about 5kB.

5.1 Milo cost analysis
If we continue to assume that the TC always queries the
user on ten cameras, then the entire auditing process will
take less than 10 minutes per user in the worst case (when
there are 2,000 segments) and less than 2 minutes in the
best case (when there are 500 segments). If we consider
pricing computational resources as according to Amazon
EC2 [3], then to approximately match the computer used
for our benchmarks would cost about 10 cents per hour.
Between 6 and 30 users can be audited within an hour, so
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Length Time step Segments Time for TC (s)

1 mile 1 minute 2000 55.68
1 mile 1 hour 1000 33.51
2 miles 1 hour 500 10.45

Table 2: The average time, in seconds and over a run of 10, for the TC to perform a single spot check given segment lengths
and time steps; we consider only the active time spent and not the time waiting for the OBU. Essentially all of the time was
spent iterating over the segments; as such, the time taken grows approximately linearly with the number of segments. To
determine the approximate number of segments given segment lengths and time steps, we assumed that an average user would
drive for 1,000 miles in a 30-day month, or about 33 hours (1 hour each weekday and an extra 11 hours over four weekends).

Object Size (B)

NIZK 5455
Commitment 130
Ciphertext 366
Total Pay segment 5955
Audit message 494

Table 3: Size of each of the components that needs to
be sent between the OBU and the TC, in bytes. Each
segment of the payment consists of a NIZK, commitment,
and ciphertext; all the segments are forwarded to the TC
from the TSP at the start of an audit. In the course of the
Audit protocol the OBU must also send blind IBE keys to
the TC.

each user ends up costing the system between one-third
of a cent and 2 cents each month; this is an amount that
the TSP could easily charge the users if need be (although
the cost would presumably be cheaper if the TC simply
performed the computations itself). We therefore believe
that the amount of computation required to perform the
audits, in addition to being necessary in guaranteeing
fairness and honesty within the system, is reasonably
practical.

Finally, to examine how much Milo would cost if de-
ployed in a real population we consider the county of San
Diego, which consists of 3 million people possessing ap-
proximately 1.8 million vehicles, and almost 2,800 miles
of roads [16, 17, 43]. As we just saw, Milo has a compu-
tational cost of up to 2 cents per user per month, which
means a worst-case expected annual cost of $432,000; in
the best case, wherein users cost only one-third of a cent
per month, the expected annual cost is only $72,000. In
the next section, we can see how these costs compares
to that of the “naïve” solution to collusion protection;
i.e., one in which we attempt to protect against driver
collusion through placement of cameras as opposed to
prevention and protection at the system level.

6 Collusion Resistance
Previously proposed tolling systems did not take collusion
into account, as they allow the auditing authority to trans-
mit camera locations in the clear to drivers. Given these
locations, colluding drivers can then share their audit tran-
scripts each month in order to learn a greater number of

camera locations than they would have learned alone. Fur-
thermore, websites already exist which record locations
of red light cameras [37] and speed cameras [36]; one
can easily imagine websites similar to these that collect
crowd-based reports of audit camera locations. With cam-
eras whose locations are fixed from month to month, the
cost to cheat is therefore essentially zero (just check the
website!) and so we can and should expect enterprising
drivers to take advantage of the system. In contrast, Milo
is specifically designed to prevent these sorts of trivial
collusion attacks.

In addition to learning camera locations through the
course of the audit phase, drivers may also learn camera
locations from simply seeing them on the road. This is
also quite damaging to the system, as drivers can learn
the locations of cameras simply by spotting them. After
pooling together the various locations and times at which
they saw cameras, cheating drivers can fix up their driving
record in time to pass any end-of-month audit protocol.

To prevent such cheating, a system could instead re-
quire the OBU to transmit the tuples corresponding to
segments as they are driven, rather than all together at
the end of the month. Without an anonymizing service
such as Tor (used in VPriv [38]), transmitting data while
driving represents too great a privacy loss, as the TSP
can easily determine when and for how long each driver
is using their car. One possible fix might seem to be to
continually transmit dummy segments while the car is
not in use; transmitting segments in real time over a cel-
lular network, however, leaks coarse-grained real-time
location information to nearby cell towers (for example,
staying connected to a single tower for many hours sug-
gests that you are stationary), thus defeating the main goal
of preserving driver privacy.

Finally, we note that there exists a class of expensive
physical attacks targeting any real-world implementation
of a camera-based audit protocol. For example, against
fixed-location cameras, cheating drivers could disable
their OBU for specific segments each month, revealing in-
formation about those segments. Against mobile cameras,
a driver could follow each audit vehicle and record its
path, sharing with other cheating drivers as they go. One
can imagine defenses against these attacks and even more
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fanciful attacks in response; these sort of attacks quickly
become very expensive and impractical, however, and
provide tell-tale signs of collusion (e.g., repeated cheat-
ing, suspicious vehicles). We therefore do not provide a
system-level defense against them.

6.1 Collusion resistance cost analysis
With Milo, we have modified the PrETP system to avoid
leaking the locations of cameras as part of the audit pro-
tocol. An alternative approach is to leave PrETP (or one
of the other previously proposed solutions) in place and
increase the number of audit cameras and their mobility,
thus reducing the useful information leaked in audits even
when drivers collude. Whereas deploying Milo would
increase computational costs over PrETP, deploying the
second solution would increase the operational costs as-
sociated with running the mobile audit cameras. In this
section, we compare the costs associated with the two
solutions. Even with intentionally conservative estimates
for the operating costs of mobile audit cameras, Milo ap-
pears to be competitive for reasonable parameter settings;
as Moore’s law makes computation less expensive, Milo
will become more attractive still.

Hardening previous tolling systems against trivial
driver collusion is possible if we consider using continu-
ously moving, invisible cameras. Intuitively, if cameras
move randomly, then knowing the position and time at
which one audit camera was seen does not allow other
cheating drivers to predict any future camera locations.
The easiest way to achieve these random spot checks is to
mount cameras on special-purpose vehicles, which then
perform a random walk across all streets in the audit area.
Even this will not generate truly random checks (as cars
must travel linearly through streets and obey traffic laws);
for ease of analysis we assume it does. Furthermore, we
will make the assumptions that the audit vehicles will
never check the same segment simultaneously, operate
24 hours a day (every day), and are indistinguishable from
other cars; tolling segments are 1 mile; and non-audit vehi-
cles drive all road segments with equal probability. These
assumptions are by no means realistic, but they present
a stronger case for moving cameras and so we use them,
keeping in mind that any more realistic deployment will
have higher cost.

Using a probability analysis similar to that of VPriv [38,
Section 8.4], we consider an area with M miles of road
and C audit vehicles. If both audit vehicles and other
drivers are driving all roads uniformly at random, then
a driver will share a segment with an audit vehicle with
probability p = C

M with each mile driven. If the driver
travels m miles in a tolling period, she will be seen at least
once by an audit vehicle with a probability of

1− (1− p)m = 1−
(

M−C
M

)m

. (1)
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Figure 2: A cost comparison of using the Milo system
against using mobile cameras within previously proposed
systems. We know, from Section 5.1, that Milo has a
worst-case computational cost of $432,000 per year and
a best case of $72,000; for the other systems, we ignore
computation completely (i.e., we assume it is free). Even
with the minimal costs we have assigned to operating
a fleet of audit vehicles 24 hours a day and assuming
worst-case computational costs, Milo becomes equally
cheap when the probability of catching cheating drivers is
83%, and becomes significantly cheaper as the probability
approaches 100%. For Milo’s best-case cost, it becomes
cheaper as soon as more than one camera is used.

To determine the overall cost of this type of operation,
we return to San Diego County (discussed already in Sec-
tion 5.1); recall that it consists of 1.8 million vehicles driv-
ing on 2,800 miles of road, in which the average distance
driven by one vehicle is 1,000 miles in a month. Using
Equation 1, with one audit vehicle (C = 1), the probability
that a driver gets caught is 1− (2799/2800)1000 ≈ .3, so
that a potentially cheating driver still has a 70% chance
of completely avoiding any audit vehicles for a month. If
we use two audit vehicles, then this number drops to 49%.
Continuing in this vein, we need 13 audit vehicles to guar-
antee a 99% chance of catching drivers who intentionally
omit segments. Achieving these results requires the TC
to employ drivers 24 hours a day, as well as purchase,
maintain, and operate a fleet of audit vehicles. To con-
sider the cost of doing so, we estimate the depreciation,
maintenance, and operation cost of a single vehicle to be
approximately $12,500 a year [44]. Furthermore, Cali-
fornia has a minimum wage of $8.00/hr; paying this to
operate a single vehicle results in minimum annual salary
costs of $70,080, ignoring all overtime pay and benefits.
Each audit vehicle will therefore cost at least $82,500 per
year (ignoring a number of additional overhead costs).

Finally, we compare the cost of operating these mobile
cameras with the cost of the Milo system. Because Milo
leaks no information about camera locations to drivers,
cameras can in fact stay at fixed locations; as long they
are virtually invisible, drivers have no opportunities to
learn their locations and so there is no need to move them
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continuously. We therefore consider placing invisible
cameras at random fixed locations, and can calculate the
probability of drivers being caught by Milo using Equa-
tion 1, where we now use C to represent the number of
cameras (and continue to assume that drivers drive 1,000
miles at random each month).

Figure 2 compares the cost of Milo with fixed cameras
and the cost of previous systems with mobile cameras
as the probability of detecting cheating increases. We
used a per-camera annual cost of $10,000.6 As we can
see, in the worst case, Milo achieves cost parity with
mobile cameras at a detection probability of 83% and
becomes vastly cheaper as the systems approach complete
coverage, while in the best case it achieves cost parity
as soon as more than a single camera is used (which
gives a detection probability of around 30%). With either
of these numbers, we remember that our assumptions
about the cost of operating these vehicles significantly
underrated the actual cost; substituting in more realistic
numbers would thus cause Milo to compare even more
favorably. In addition, future developments in computing
technology are almost guaranteed to drive down the cost
of computation, while fuel and personnel costs are not
likely to decrease, let alone as quickly. Therefore, we
believe that Milo is and will continue to be an effective
(and ultimately cost effective) solution to protect against
driver collusion.

7 Related work
The study of privacy-preserving traffic enforcement and
toll collection was initiated in papers by Blumberg, Keeler,
and shelat [8] and Blumberg and Chase [7]. The former of
these papers gave a system for traffic enforcement (such
as red-light violations) and uses a private set-intersection
protocol at its core; the latter gave a system for tolling
and road pricing, and uses general secure function evalu-
ation. Neither system keeps the location of enforcement
or spot-check devices secret from drivers. In an impor-
tant additional contribution, these papers formalized the
“implicit privacy” that drivers currently enjoy: The police
could tail particular cars to observe their whereabouts, but
it would be impractical to apply such surveillance to more
than a small fraction of all drivers.7

6This number was loosely choosen based upon purchase costs for
red light violation cameras. Note that the choice does not affect the
differential system cost, as both systems must operate the same number
of cameras to achieve a given probability of success.

7We would like to correct one misconception, lest it influence future
researchers. Blumberg, Keeler, and shelat write, “the standards of
suspicion necessary to stop and search a vehicle are much more lax
than those required to enter and search a private residence.” In the
U.S., the same standard — probable cause — governs searches of both
vehicles and residences; the difference is only that a warrant is not
required before the search of a car, as “it is not practicable to secure a
warrant because the vehicle can be quickly moved out of the locality
or jurisdiction in which the warrant must be sought” (Carroll v. United

Another approach to privacy-preserving road pricing
was given by Troncoso et al. [42], who proposed trusted
tamper-resistant hardware in each car that calculates the
required payment, and whose behavior can be audited by
the car’s owner. The Troncoso et al. paper also includes
a useful survey of pay-as-you-drive systems deployed at
the time of its publication. See Balasch, Verbauwhede,
and Preneel [5] for a prototype implementation of the
Troncoso et al. approach.

De Jonge and Jacobs [19] proposed a privacy-
preserving tolling system in which drivers commit to the
path they drove without revealing the individual road seg-
ments. De Jonge and Jacobs’ system uses hash functions
for commitments, making it very efficient. Only additive
road pricing functions are allowed (i.e., ones for which
the cost of driving along a path is the sum of the cost
of driving along each segment of the path); this makes
possible a protocol for verifying that the total fee was
correctly computed as the sum of each road segment price
by revealing, essentially, a path from the root to a single
leaf in a Merkle hash tree. (This constitutes a small infor-
mation leak.) In addition, de Jonge and Jacobs use spot
checks to verify that the driver faithfully reported each
road segment on which she drove.

More recently, Popa, Balakrishnan, and Blumberg pro-
posed the VPriv [38] privacy-preserving toll collection
system. VPriv takes advantage of the additive pricing
functions it supports to enable the use of homomorphic
commitments whereby the drivers commit to the prices
for each segment of their path as well as the sum of the
prices. Then, the product of the commitments is a com-
mitment of the sum of the prices. This eliminates the need
for a protocol to verify that the sum of segment prices
was computed correctly. Like previous systems, VPriv
uses (camera) spot checks to ensure that drivers faithfully
reveal the segments they drove. The downside to VPriv
is that, for the audit protocol, drivers must upload the
road segments they drove to the server; to avoid linking
these to their IP address, they must use an anonymizing
network such as Tor.

Balasch et al. proposed PrETP [4] to address some
of the shortcomings in VPriv. In PrETP, drivers do not
reveal the road segments they drove in the clear, and so do
not need an anonymizing network. Instead, they commit
to the segments and, using a homomorphic commitment
scheme, to the corresponding fees; in the audit protocol,
they open the commitments corresponding to the road
segments on which spot-check cameras observed them.

In each of the system of de Jonge and Jacobs, VPriv,
and PrETP, drivers are challenged in the audit protocol
to prove that they committed to or otherwise uploaded
the segments for which there is photographic evidence

States, 267 U.S. 132 (1925), at 153).
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that they were present. As discussed in Sections 1 and 2,
this revealing of camera locations enables several attacks
which allow drivers to pay less than their actual tolls.
Additionally, camera placement and tolling areas must be
restricted to ensure driver privacy, for example, by using
“virtual trip lines” [30].

In recent work, Hoepman and Huitema [29] observed
that in both VPriv and PrETP the audit protocol allows
the government to query cars about locations where there
was no camera, a capability that could be misused, for
example, to identify whistleblowers. They propose a
privacy-preserving tolling system in which vehicles can
be spot-checked only where their presence was actually
recorded, and in which overall driver privacy is guar-
anteed so long as the pricing provider and aggregation
provider do not collaborate. Like VPriv, Hoepman and
Huitema’s system requires road segments to be transmit-
ted from the car to the authority over an anonymizing
network.

Besides tolling, there are other vehicular applications
that require privacy guarantees; see, generally, Hubaux,
Cǎpkun, and Luo [31]. One important application is
vehicle-to-vehicle ad hoc safety networks [14]; see Freudi-
ger et al. [21] for one approach to location privacy in such
networks. Another important application is aggregate traf-
fic data collection. Hoh et al. [30] propose “virtual trip
lines” that instruct cars to transmit their location infor-
mation and are placed to minimize privacy implications;
Rass et al. [39] give an alternative construction based on
cryptographic pseudonym systems.

Vehicle communication is one class of ubiquitous com-
puting system. Location privacy in ubiquitous computing
generally is a large and important research area; see the
recent survey by Krumm [33] for references.

8 Conclusions
In recent years, privacy-preserving toll collection has been
proposed as a way to implement more fine-grained pricing
systems without having to sacrifice the privacy of drivers
using the roads. In such systems drivers do not reveal
their locations directly to the toll collection authorities;
this means there needs to be a mechanism in place to guar-
antee that the drivers are still reporting their accumulated
fees accurately and honestly. Maintaining this balance
between privacy and honesty in an efficient and practical
way has proved to be a challenging problem; previous
work, however, such as the VPriv and PrETP systems, has
demonstrated that this problem is in fact tractable. Both
these systems employ modern cryptographic primitives
to allow the driver to convince the collection authority of
the accuracy of her payment without revealing any part of
her driving history. To go along with this collection mech-
anism, a series of random spot checks (i.e., the authority
challenging the driver to prove that she paid for segments

in which she was caught on camera) must be performed
in order to maintain honesty and fairness throughout the
system.

In this paper, we have identified large-scale driver col-
lusion as a realistic and damaging threat to the success
of privacy-preserving toll collection systems. To protect
against these sorts of collusions, we have presented Milo,
a system which achieves the same privacy properties as
VPriv and PrETP, but strengthens the guarantee of driver
honesty by avoiding revealing camera locations to drivers.
We have also implemented the new parts of our system to
show that achieving this stronger security guarantee does
not add an impractical burden to any party acting within
the system.

Finally, along more practical lines, we have consid-
ered a naïve approach to protecting against collusions and
shown that, from both a cost and effectiveness considera-
tion, it is ultimately less desirable and more cumbersome
than Milo.

The weaknesses we identify in previous systems are
caused by the gap between the assumption made by
the cryptographic protocols (that spot checks are unpre-
dictable) and the real-world cameras used to implement
them — cameras that are physical objects that can be iden-
tified and may be difficult to move. If drivers are able to
avoid some cameras, more of them will be required; if
too many spot-check cameras are deployed, the records
they generate will themselves degrade driver privacy. We
believe that it is important for work on privacy-preserving
tolling to address this limitation by carefully considering
how the spot checks it relies on will be implemented.
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A Blind and Anonymous IBE
In this section, we will see a formal outline of the blind
IBE scheme we use (discussed briefly in Section 3), as
well as the notion of security we expect it to satisfy and a
proof that it does so. We start with the scheme, which as
mentioned is essentially a “twin” version of the Boneh-
Franklin IBE. Recall that, formally, a blind IBE consists
of four algorithms: Setup, which is run by the authority to
generate the master secret key and the system parameters;
BlindExtract, which is run as an interaction between a
user and the authority wherein the user obtains the secret
key for a given identity (but without the authority learning
which identity); IBEnc, in which a user can encrypt a
message for the person specified by some identity; and
finally IBDec, in which the user with the secret key for
an identity can decrypt a ciphertext intended for him. We
describe these algorithms for our scheme below:

• Setup(1k): Compute a bilinear group G of prime
order q with a generator g, as well an associated
symmetric bilinear map e : G×G→ GT . Further-
more, set the message space to be M = {0,1}m for
some value of m. Pick random x1,x2← F∗q and com-
pute X1 = gx

1 and X2 = gx
2. Set msk = (x1,x2) and

params = (q,G,GT ,g,e,M,X1,X2,H,H ′), where
H and H ′ are hash functions that map onto G and
M respectively, and output params.

• BlindExtract(User(params, id)↔ Auth(msk)): For
a given identity id, the user will start by picking ran-
domness r← F∗q and sending req = H(id) ·gr to the
authority. The authority then sends back sk′1 = reqx1

and sk′2 = reqx2 . To complete the interaction, the user
will use his randomness to compute sk1 = sk′1/X r

1
and sk2 = sk′2/X r

2 . He can then check that these keys
are properly formed by checking that e(sk1,g) =
e(H(id),X1) and e(sk2,g) = e(H(id),X2).
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• IBEnc(params, id,m): First pick randomness r←
F∗q. Next, compute intermediate values Z1 =
e(H(id),X1)

r and Z2 = e(H(id),X2)
r. Then, com-

pute h=H ′(id,gr,Z1,Z2) and output c= (gr,h⊕m).

• IBDec(params,skid,c): Parse c=(c1,c2) and skid =
(sk1,sk2). Compute intermediate values Z1 =
e(sk1,c1), Z2 = e(sk2,c1), and h = H ′(id,c1,Z1,Z2).
Finally, output the message as m = h⊕ c2.

Informally, we require that two security properties hold:
first, in the process of running the BlindExtract protocol,
even an adversarial user can learn nothing beyond his
secret key; and, second, even an adversarial authority can
learn nothing about a user’s identity. In the original paper
by Green and Hohenberger [28], these two properties are
formalized as leak-free extraction and selective-failure
blindness respectively. While the definition for selective-
failure blindness is game-based, the definition for leak-
free extraction is simulation-based, as they require (for
their final application of simulatable oblivious transfer)
that the identity be extractable from the BlindExtract pro-
tocol. As we do not need such a strong property, we
propose an alternative and natural game-based definition
of leak-free extraction, modeled after the traditional blind
signature notion of one-more unforgeability first formal-
ized by Pointcheval and Stern [? ]. Our new notion, which
we call one-more indistinguishability, is defined using the
following game.

Definition A.1. For a blind IBE scheme
(Setup,BlindExtract, IBEnc, IBDec), a given adver-
sary A, and bits b1, . . . ,bn+1 ← {0,1} unknown to A,
define the following game:
Step 1. (msk,params)← Auth(1k).
Step 2. A now gets access to params and to a blind ex-

traction oracle. In other words, A will get to act
as the user in an interaction with Auth(msk) n0
times so that, for identities id1, . . . , idn0 , A ends
up with sk1, . . . ,skn0 (and the authority learns
nothing about which keys were extracted).

Step 3. {(idi,m
(i)
0 ,m(i)

1 )}n+1
i=1 ←A(params,{ski}n0

i=1).
Step 4. A now gets access to the set {ci =

IBEnc(params, idi,m
(i)
bi
)}n+1

i=1 . A may now
interact with the blind extraction oracle
n− n0 more times to end up with secret keys
skn0+1, . . . ,skn for identities idn0+1, . . . , idn.

Step 5. Finally, A must output bits b′1, . . . ,b
′
n+1.

We say that the blind IBE scheme has one-more in-
distinguishability if for all such PPT algorithms A there
exists a negligible function ν(·) and a security parameter
k0 such that for all k > k0 the probability (over the choices
of the bi and the randomness used in Setup, BlindExtract,
IBEnc, and A) that b′i = bi for all i, 1 ≤ i ≤ n+ 1, is at
most 1/2+ν(k).

In some blind extraction protocols (including ours) the
user’s messages hide his desired identity information-
theoretically. Such protocols are not extractable, so they
cannot satisfy the leak-free extraction notion of Green and
Hohenberger. By contrast, our notion of one-more indis-
tinguishability does not rule out such protocols.

(It would be interesting to construct blind extraction
protocols for anonymous IBEs other than Boneh-Franklin,
since these would avoid reliance on the random ora-
cle model and could satisfy Green and Hohenberger’s
stronger notion of leak-free extraction. However, this
appears to be a nontrivial undertaking. Indeed, the anony-
mous IBEs and hierarchical IBEs in the standard model
of which we are aware obtain their anonymity precisely
by withholding from users the values necessary to reran-
domize their keys or to form a blinded Boneh-Boyen hash
of their identity, which is necessary to avoid leaking in-
formation from the secret key or the extraction request,
respectively.)

Using Green and Hohenberger’s notion of selective-
failure blindness and our notion of one-more indistin-
guishability, we can prove our blind Boneh-Franklin
scheme secure. The proof, like the proof of Boneh-
Franklin itself, is in the random oracle model. Because
of the close relation between it and the Boldyreva blind
signature [9], we cannot hope to prove our scheme secure
under a nicer assumption than Boldyreva’s chosen-target
CDH assumption. The assumption we use, described be-
low, is essentially the Bilinear Diffie-Hellman analogue
of Boldyreva’s chosen-target CDH.

Assumption A.2. For a prime-order bilinear group
(q,G,GT ,g,e), a random value x← F∗q, a “target” ora-
cle that on any input outputs a random pair (W,Y ) ∈ G2,
and a “helper” oracle that, on input U ∈ G, outputs Ux, it
is hard for an adversary A that is given X = gx and access
to these two oracles to output {e(Wi,Yi)

x}k+1
i=1 , where k is

the number of times it has queried the helper oracle.

Finally, we can put everything together and prove the
following theorem:

Theorem A.3. If Assumption A.2 holds, the IBE scheme
outlined above is blind and anonymous in the random
oracle model.

As the anonymity of the scheme follows directly from
the anonymity of the original Boneh-Franklin scheme,
we can focus solely on the properties needed for blind-
ness: one-more indistinguishability, as defined by the
game-based Definition A.1 above, and selective-failure
blindness, as defined by Green and Hohenberger [28, Def-
inition 3].

Lemma A.4. If Assumption A.2 holds, the scheme out-
lined above has one-more indistinguishability in the ran-
dom oracle model.
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Proof. To show this, we need to take an adversary A
that wins at the game in Definition A.1 with some non-
negligible advantage ε and use it to construct an ad-
versary B that breaks Assumption A.2 with some non-
negligible probability ε ′. Our adversary B will get as in-
put the description (q,G,GT ,g,e) of some bilinear group
and a value X ∈ G. To set up the parameters for the
IBE, it will set X1 = X and then compute X2 = gs/X r

for some random values r,s← F∗q; note that this means
the discrete logs of X1 and X2 (with respect to g) is
are x1 = x and x2 = s− x1r, neither of which B knows.
B can now publish the parameters of the system as
(q,G,GT ,g,e,M,X1,X2,H,H ′) (where M is just some
arbitrary message space and H and H ′ are modeled as
random oracles) and remember the values of r and s for
later.

Now, B will need to answer three types of queries
from A: queries to H, queries to H ′, and blind extraction
queries. Random oracle queries for H ′ will be very simple
in this phase: on a query of the form (id,c1,Z1,Z2), if B
has not seen this query before then it will pick a random
value R←M, set H ′(id,c1,Z1,Z2) = R, and both return
this to A and remember it for later; if it has seen this query
it will simply return the stored value. For H queries, B
will get a query of the form id. If this is a new query then
B can query its target oracle to get back a pair (W,Y ); it
then sets H(id) = Y , remembers both W and Y for later,
and returns Y to A. As with H ′ queries, if this is not a new
query then B will simply return the value of Y it already
has stored. Finally, for blind extraction queries, B will
get a request req from A. B can now query its helper
oracle on req to get back A = reqx; it then sets sk′1 = A
and sk′2 = reqs/Ar, and returns (sk′1,sk′2) to A.

Next, A will output the challenge set
{(idi,m

(i)
0 ,m(i)

1 )}n+1
i=1 . B can now proceed as fol-

lows: For each tuple (idi,m
(i)
0 ,m(i)

1 ), B can pick a bit
bi←{0,1} and remember it for the next phase. If it has
previously been queried (as the H oracle) on idi, then
it will set c1i = Wi, where the response from the target
oracle on query idi was (Wi,Yi) and it had previously set
H(idi) = Yi. If not, it will query the target oracle to get
the pair (Wi,Yi); it will then set c1i = Wi and remember
that H(idi) =Yi for later. It can then pick a random string
Ri ←M and set c2i = Ri (and again remember this for
later). After repeating this process for each i, B can now
return the set {ci = (c1i,c2i)}n+1

i=1 to A.
In the next phase, B can continue to answer hash

queries to H and blind extraction queries in the same way
as before. To answer H ′ queries now, on a given query
(id,c1,Z1,Z2) there are a number of possible choices. If
B has seen this query before, then it will simply return the
stored value. If id 6= idi for any i, 1≤ i≤ n+1 (in other
words it is none of the identities chosen in the previous

phase by A), then B will again choose a random string R
and set H ′(id,c1,Z1,Z2) = R. If id is in fact one of these
identities, say id = id j for some j, then B can now look at
c1. If c1 6=Wj, then B can again run the process of setting
the hash value to be random. If c1 = Wj, then B will
check that Zr

1Z2 = e(Yj,Wj)
s. If this outputs 0, then B can

simply set the hash value to be random as before. If, on
the other hand, this outputs 1, then B will use the chosen
bit b j from before and set H ′(id,c1,Z1,Z2) = m( j)

b j
⊕ c2 j.

B will then return this hash value to A and store the value
Z1 for itself.

At the end, A will output its guess bits {b′i}n+1
i=1 . If

A successfully guesses the correct bit for each i with
non-negligible advantage ε , then we can argue that with
non-negligible probability ε ′ B will have accumulated in
the course of the above interaction n+ 1 values of the
form e(Wi,Yi)

x, where x is the discrete log of its original
input X . To see this, note that the only case in which B
returned a non-random value for an H ′ query was when
the query (id,c1,Z1,Z2) was “well-formed” in the sense
that id and c1 matched one of the above ciphertexts, and
Z1 and Z2 were formed honestly with respect to the de-
cryption process. To see this last part, note that the test
Zr

1Z2 = e(Yj,Wj)
s is just the Twin BDH test of Cash, Kiltz,

and Shoup [15]. If Z1 and Z2 were in fact properly formed,
then we have

Zr
1Z2 = e(Y x1 ,W )r · e(Y x2 ,W )

= e(Y,W )rx1+x2

= e(Y,W )rx+(s−rx)

= e(Y,W )s,

so that this equality will hold and the test will pass. Con-
versely, if Z1 and Z2 are not properly formed, the check
performed by B will fail with overwhelming probabil-
ity (over the choice of r and s). To see this, we rewrite
Zr

1Z2 = e(Y,W )s as(
Z1/e(Y,W )x1

)r
= e(Y,W )x2/Z2 (2)

(using the fact that x2 = s− x1r). IF Z1 and Z2 are not
both properly formed then at least one of Z1/e(Y,W )x1

and Z2/e(Y,W )x2 is not equal to 1; but then the probabil-
ity that Equation (2) holds is zero if Z1/e(Y,W )x1 = 1 and
1/q otherwise, since r is independent of the adversary’s
view. Since A can make only polynomially many queries
to H ′, then, by the union bound, the probability that B
ever accepts an improperly formed tuple (Z1,Z2) is still
negligible. Provided this never happens, unless A queries
H ′ with the correct (Z1,Z2) pair, the message remains
information-theoretically hidden, as the value c2 is com-
pletely random and independent from the message and
the value of H ′(id,c1,Z1,Z2) will be as well. So, the only
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way for A to learn any information at all about the mes-
sage (and thus gain non-negligible advantage in guessing
the bit) is to send an H ′ query to B in which Z1 and Z2 are
well-formed, so Z1 looks like e(Y x1 ,W ) = e(Y,W )x1 ; be-
cause we set X1 = X this is furthermore equal to e(Y,W )x,
which is exactly the type of value B is looking for.

Therefore, for every bit that A guesses correctly with
non-negligible advantage over 1/2, B must have also
obtained a tuple of the form e(Y,W )x with similar non-
negligible probability. If A does not query H ′ at the
appropriate value for even one of the n+ 1 bits it must
guess, then the probability that it succeeds in guessing
all of them is 1/2, since that unqueried bit remains hid-
den. Thus if A has non-negligible advantage in guessing
all n+ 1 bits, it must reveal to B values Z = e(Y,W )x

for each of n+ 1 pairs (W,Y ) obtained from B’s target
oracle.

Finally, we need to argue that the interaction with
B is indistinguishable from the interaction A would
have in the honest game. As H and H ′ are random
oracles and B remembers answers to old queries to
maintain consistency, the only case we must consider
is when B doesn’t pick the output uniformly at ran-
dom and instead sets H ′(id j,c1 j,Z1,Z2) = R j⊕m( j)

b j
for

some j. As R j is uniformly random though, this will
also be random and so the distribution of the answers
that B gives for both the H and H ′ queries is identical
to the honest distribution. Similarly, for blind extrac-
tion B in fact computes the keys honestly, as it returns
sk′1 = reqx1 and sk′2 = reqs/(reqx1)r = reqs−x1r = reqx2 ,
which is exactly what an honest authority would re-
turn.

Next, we consider the distribution of the ciphertexts
{ci}. In the honest case we have c1i = gri for some uni-
formly random value ri; as the Wi output by the target
oracle is also uniformly random and B uses c1i = Wi,
we have that the distribution over these values is again
identical. Similarly, B uses c2i = Ri instead of c2i =
h⊕m; again though, because h is assumed to be ran-
dom, both of these values will be distributed uniformly
at random over M. Finally, we note that when B does
use h j = H ′(id j,c1 j,Z1,Z2) = c2 j ⊕m( j)

b j
the ciphertext

will correctly decrypt as h j ⊕ c2 j = m( j)
b j

. In all other
cases this will return some random value unrelated to
the message (because the hash value will just be ran-
dom); this would happen in the honest case as well, how-
ever, as B answers H ′ queries randomly for the “special”
choices of id j and c1 j only if Z1 and Z2 are malformed
(and in the non-special cases its answers are still con-
sistent, as A would need to make H ′ queries both to
encrypt and decrypt). Note that, except with negligi-
ble probability, A cannot query H ′ at a properly-formed

point (id j,c1 j,Z1,Z2) before it has seen the challenge
ciphertexts, as it will not have seen the values {c1 j},
which are uniformly distributed in an exponentially large
space.

As we’ve now argued that A cannot distinguish be-
tween playing the honest game and playing the game
with B (in fact, we’ve shown that there is no dif-
ference, except with negligible probability), we know
that A will behave identically in both cases. Further-
more, as B succeeds whenever A succeeds (except
with negligible probability) and A was assumed to suc-
ceed with non-negligible advantage, we have success-
fully constructed our adversary B to break Assump-
tion A.2 with non-negligible probability and so we are
done.

Now that we have shown one-more indistinguishabil-
ity, we only need to show that selective-failure blindness
holds as well and we will be done. Fortunately, proving
selective-failure blindness is much easier, as essentially
all the values in our scheme (the keys, ciphertexts, etc.)
are information-theoretically indistinguishable from the
identity being used, meaning the identity is always uncon-
ditionally hidden.

Lemma A.5. Any adversary, even one that is compu-
tationally unbounded, will have no advantage in the
selective-failure blindness game for our IBE scheme.

Proof. We can start by reminding ourselves of the game
that A will play: it can first pick the IBE parameters
params and two identities id0 and id1; it then engages in
the BlindExtract protocol with two honest users, one us-
ing idb and the other using id1−b for some bit b←{0,1}
unknown to A. If neither user outputs an error message
(indicating that the resulting skb and sk1−b values were
well-formed) then A gets to see both keys; otherwise, A
gets to learn which one failed but no information about
the one that succeeded. This means there are three po-
tential places for A to learn information about the bit b:
the protocol interaction itself, whether or not the users
output error messages, and the final secret keys if it is
given them. We can consider each of these options argue
in turn that each of them is not possible.

Protocol interaction. Our BlindExtract protocol con-
sists of two messages, which means that the only opportu-
nity for A to learn anything about the underlying identity
is through the query value req. Observe, however, that for
the user with idb we have req = H(idb) ·gr for some uni-
formly random r← F∗q. This req value will therefore be
information-theoretically independent from the identity
idb, as it will just be a uniformly random element of G.
As the same holds true for the user with id1−b, A cannot
hope to gain information about b from the interaction
itself.
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Whether users accept. Looking back at the scheme,
we can see that the user with idb will accept the val-
ues sk′b1 and sk′b2 given to him by A if and only
if e(sk′b1/X r

1 ,g) = e(H(idb),X1) and e(sk′b2/X r
2 ,g) =

e(H(idb,X2). Now, we can argue that A can in fact de-
termine whether or not these equalities hold on its own,
and will thus learn no information from this step. To see
this, we can focus on the case for skb1; the argument will
be identical for skb2. Because A computed sk′b1 it clearly
knows this value, as well as the discrete log x1 of X1. It
can then compute A = reqx1 = H(idb)

x1 ·gx1r and check
that

e(sk′b1,g) = e(A,g). (3)

Using the bilinearity property of the pairing, we can see
that

e(A,g) = e(H(idb)
x1 ·gx1r,g)

= e(H(idb)
x1 ,g) · e(gx1r,g)

= e(H(idb),g)x1 · e(X r
1 ,g)

= e(H(idb),gx1) · e(X r
1 ,g)

= e(H(idb),X1) · e(X r
1 ,g).

Dividing both sides of Equation 3 by e(X r
1 ,g) there-

fore gives us e(sk′b1,g)/e(X r
1 ,g) = e(H(idb),X1), or

e(sk′b1/X r
1 ,g) = e(H(idb),X1), which we observe is the

exact check run by the user. The check done by A will
therefore pass if and only if the user’s check will pass,
which means the adversary can determine no information
about b from this stage, as any information learned from
the users’ acceptance could have already been determined
by A itself.

The resulting secret keys. Finally, if both users ac-
cept their secret keys then A now has access to sk0 =
(H(id0)

x1 ,H(id0)
x2) and sk1 = (H(id1)

x1 ,H(id1)
x2).

Note that these values are not randomized, and depend
only on id0, id1, x1, and x2. As these are all values pro-
vided by A, however, it can learns nothing from seeing
sk0 and sk1, as it could have computed them itself.

We are now done, as we have argued that A can learn
no information whatsoever about the identities in any
part of the blind extraction process, even if A is in fact
computationally unbounded.
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