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Abstract
One of the defining features of Bitcoin and the thousands of

cryptocurrencies that have been derived from it is a globally
visible transaction ledger. While Bitcoin uses pseudonyms
as a way to hide the identity of its participants, a long line
of research has demonstrated that Bitcoin is not anonymous.
This has been perhaps best exemplified by the development
of clustering heuristics, which have in turn given rise to the
ability to track the flow of bitcoins as they are sent from one
entity to another.

In this paper, we design a new heuristic that is designed
to track a certain type of flow, called a peel chain, that rep-
resents many transactions performed by the same entity; in
doing this, we implicitly cluster these transactions and their
associated pseudonyms together. We then use this heuristic
to both validate and expand the results of existing clustering
heuristics. We also develop a machine learning-based valida-
tion method and, using a ground-truth dataset, evaluate all our
approaches and compare them with the state of the art. Ulti-
mately, our goal is to not only enable more powerful tracking
techniques but also call attention to the limits of anonymity
in these systems.

1 Introduction

Since its introduction in 2008, Bitcoin has used a pseudony-
mous system for transferring coins, with entities forming
transactions in which they and their recipient(s) are identified
using just a set of pseudonyms or addresses that have no in-
herent link to their identity. It has been demonstrated by now,
however, that this use of pseudonyms does not make Bitcoin
anonymous. This has in large part been driven by the devel-
opment of various clustering heuristics that identify multiple
pseudonyms operated by the same entity [2,10,14,31,44–46],
with research also showing that de-anonymization is possible
at the network layer [5, 25]. These clustering heuristics use
patterns of usage present in the Bitcoin blockchain as evi-
dence of the shared ownership of the pseudonyms they clus-
ter together; one heuristic that has been particularly widely

adopted is the so-called co-spend heuristic, which says that
all addresses used as input to the same transaction belong
to the same entity. This heuristic has been so effective that
companies such as Chainalysis now use it — and heuristics
derived from it — to provide Bitcoin tracking as a service
to both law enforcement agencies and financial institutions,
such as cryptocurrency exchanges, looking to comply with
anti-money laundering (AML) regulations. These heuristics
can be used not only to cluster together pseudonyms operated
by the same entity but, as a consequence, to track flows of
bitcoins as they are transferred from one entity to another.

This ability to track flows of bitcoins has been used in sev-
eral high-profile investigations, such as the indictment of Ross
Ulbricht as the operator of the Silk Road marketplace [15];
the blocked movement of funds paid to the WannaCry ran-
somware operators [9]; the takedown of one of the largest
websites hosting child sexual abuse material [50]; and the
takedown of several terrorist financing campaigns [51]. More
recently, Roman Sterlingov was arrested based on allegations
that he served as the operator of the Bitcoin Fog mixing ser-
vice for ten years [16]. Despite the arrest taking place in April
2021, the allegations were supported by evidence taken from
the Bitcoin blockchain as early as 2011 [4]. This investigation
thus makes clear just what is possible when all transactions
are stored in a globally visible and immutable ledger.

In this paper, we extend known heuristics for tracking flows
of bitcoins by formalizing in Section 5 the notion of a peel
chain, which is a set of linked transactions that are all initiated
by the same entity, and presenting heuristics for identifying
peel chains and following them forwards and backwards. As
compared with previous heuristics, ours are based not on
properties of individual transactions or addresses within trans-
actions, but rather on general features associated with a cluster
formed by the co-spend heuristic. In particular, we describe
in Section 4 how we assign features to a cluster based on the
transactions and addresses it contains.

We also describe in Section 4 our main dataset, which
consists of 120 clusters formed by the co-spend heuristic.
Using data provided to us by Chainalysis, we know that 60 of
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these clusters are true positives, meaning all addresses they
contain really do belong to the same entity, and that 60 of
them are false positives, meaning they contain one or more
Coinjoin transactions and thus all addresses do not actually
belong to the same entity. This access to ground-truth data
provides us with the rare ability to evaluate the accuracy of
our heuristics, as well as ones that were previously proposed.

In particular, we argue how our basic heuristic for identify-
ing and following peel chains can be used to both validate and
expand traditional clustering heuristics such as the co-spend
heuristic. In this first usage, presented in Section 6.2, we argue
that we can use the ability to identify peel chains to increase
our confidence in the results of the co-spend heuristic. We
also present in Section 6.1 a machine learning approach for
validating a cluster as a whole; i.e., for classifying it as ei-
ther a true positive or a false positive. Using our ground-truth
dataset, we are able to evaluate this classifier and show that it
achieves an accuracy of 89%.

In the second usage as an expansion heuristic, we demon-
strate how the ability to identify peel chains can be used to
expand the results of the co-spend heuristic. In particular, fol-
lowing a peel chain forwards means identifying the change
output in each transaction in the chain, so our algorithm in-
cludes an implicit change heuristic. As compared with previ-
ous change heuristics [2,10,14,31], we demonstrate using our
ground-truth dataset that our change heuristic achieves a false
discovery rate of only 0.02%; the next-best heuristic achieves
a false discovery rate of 12.7%. We then apply this expansion
heuristic to investigate ransomware addresses and to track the
funds withdrawn from an exchange account associated with
Roman Sterlingov to their deposit into the Bitcoin Fog mixing
service, showing that our heuristic is able to link these two
transactions whereas all previous heuristics would be unable
to do so.

To summarize, we make the following contributions:

• We provide a heuristic, based on a robust set of features,
for both identifying peel chains and following them for-
wards and backwards.

• We present a machine learning-based classifier and a val-
idation heuristic, both of which can be used to influence
the confidence we can have in the results of the co-spend
heuristic.

• We present a heuristic for expanding co-spend clusters,
and evaluate it using a custom-built ground-truth dataset.
Our comparison with previous heuristics shows that ours
is significantly more effective and significantly safer.

The techniques we develop are directly applicable in cryp-
tocurrency investigations, and thus have the potential to be
adopted and used in them. Above all, however, we hope
that our work helps to correct the misperception of Bit-
coin [1, 26, 30] as “anonymous and almost untraceable” [11]

and a way to allow “people [to] receive digital payments
without revealing their identity” [32].

2 Related Work

2.1 Bitcoin clustering

The ability to cluster together the addresses used as an in-
put to a transaction was first observed in the original Bit-
coin whitepaper [35], and has been used in many subse-
quent works [2, 31, 44–46]. Beyond this co-spend heuris-
tic, researchers have developed other heuristics for cluster-
ing together Bitcoin addresses. In particular, Meiklejohn et
al. [31] and Androulaki et al. [2] defined a heuristic for iden-
tifying which output in a Bitcoin transaction represented the
change being made; this change heuristic then said that this
output was controlled by the same entity as the input ad-
dresses. This heuristic was later refined by by Goldfeder
et al. [14] and Ermilov et al. [10]. There have been many
academic studies using these heuristics in order to track
crime [20,21,38,39,42,54]. Finally, in concurrent work Möser
and Narayanan propose a machine learning-based heuristic
for identifying change outputs that uses some of the same
transaction and address features as in our work [33].

Beyond proposing new clustering heuristics, a number of
studies have attempted to quantify their effectiveness and
accuracy. Nick [36] measured the accuracy of different clus-
tering algorithms using a ground-truth dataset consisting of
37,585 user wallets, which was obtained via a vulnerabil-
ity in the BitcoinJ light client implementation. The results
showed that on average more than 69% of the addresses could
be linked using only the co-spend heuristic. Harrigan and
Fretter [19] studied reasons for the effectiveness of the co-
spend heuristic and concluded that address reuse and avoid-
able merging were the main drivers. Fröwis et al. [13] dis-
cussed the effectiveness of the combined use of clustering
heuristics and attribution tags as forensic tools. By empir-
ically quantifying the effect of Coinjoin transactions, they
showed that clustering heuristics can lead to false interpreta-
tion and pointed to the need for additional metrics to quantify
the reliability of clustering results.

2.2 Bitcoin entity classification

Bartoletti et al. [3] investigated data mining techniques to
automatically detect Ponzi schemes carried out using Bitcoin.
Using supervised learning algorithms, the authors could cor-
rectly classify Ponzi schemes with a very low rate of false
positives. A number of other studies use supervised learn-
ing in order to classify unknown addresses according to the
entities they belong to [18, 49, 53]. Unsupervised learning
methods have also been used in Bitcoin to attempt to identify
fraud [40, 41, 56].
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Ranshous et al. [43] applied the notion of motifs in directed
hypergraphs to identify distinct statistical properties related
to Bitcoin exchange addresses. They build different classifica-
tion models (Random Forest, AdaBoost, Linear SVM, Percep-
tron, Logistic Regression) using a set of features, obtaining
the best results with Random Forest and AdaBoost. Jourdan
et al. [22] consider the more general problem of classifying
entities in multiple classes on the basis of properties of their
extended transaction neighborhoods.

3 Background

3.1 Bitcoin transactions
A Bitcoin transaction tx consists of ordered lists of inputs
(tx.inputs) and outputs (tx.outputs). We use tx.inputs[i] to
denote the i-th input and do the same for tx.outputs. Each
output output in a transaction is associated with an ad-
dress output.addr and a value output.value representing the
amount of coins received by the address in this transaction.
Each input to a transaction is similarly associated with an
address input.addr and a value input.value representing the
amount of coins being sent by the address in this transaction.
Furthermore, an input is itself a transaction output (TXO);
i.e. an input points to the transaction in which its associated
address received coins. Other peers in Bitcoin’s peer-to-peer
network can then check that all inputs to a transaction are
well formed and are unspent (meaning they are UTXOs), be-
fore propagating the transaction to other peers and eventually
enabling its inclusion in the blockchain. This ensures that
double-spending is not included in the blockchain, which acts
as a global ledger of all transactions.

Concretely, this means that transactions point both back-
wards, in terms of the input UTXOs pointing to the past
transactions in which they received the coins they are now
spending, and forwards, in terms of the UTXOs in future
transactions that reference any output addresses that get spent.
We denote the transaction that an input input points back-
wards to by input.prev, and the transaction that an output
output points forwards to by output.next (if it is spent). We
also denote by input.prevIdx the index of an input input in
input.prev.outputs; i.e., the index of its transaction output in
the transaction in which it was created. For the rest of this
work, when we refer to following an input to a transaction we
mean looking backwards at the past transaction that created
this UTXO, and when we refer to following an output we
mean looking forwards to any UTXOs that reference it.

3.2 Clustering Bitcoin addresses
A valid Bitcoin transaction needs to be signed using the pri-
vate keys associated with all its inputs. This has given rise to
a common heuristic for clustering together Bitcoin addresses,
known as the multi-input or co-spend heuristic [2, 31, 44–46].

This heuristic states that all inputs to a transaction are con-
trolled by the same entity, using the fact that they have all
signed the transaction as evidence of shared ownership.

Although this heuristic is considered safe in general and
has been adopted in practice, it can be invalidated by a spe-
cific type of transaction called a Coinjoin. When forming a
Coinjoin, users work together to create a transaction in which
they each control a different input and the outputs likewise
represent different recipients. This acts to mix together the
coins of these users and thus destroys the link between each
individual sender and recipient. Furthermore, it invalidates
the co-spend heuristic as it is no longer the case that all inputs
are controlled by the same entity.

Beyond the co-spend heuristic, there are a number of pro-
posed change heuristics [2,10,31]; i.e., heuristics for identify-
ing which output in a transaction that the sender uses to send
themselves their change (the value of their UTXO subtracted
by the amount they are sending to the recipient). As observed
by Meiklejohn et al. [31], identifying such outputs not only
makes it possible to include this address in the same cluster
as the sender and thus enhance the co-spend heuristic, it also
makes it possible to identify that the transaction in which
this change output is spent is also performed by the same
entity. We describe this pattern of following peel chains in
more detail in Section 5, and describe these proposed change
heuristics in more detail in Section 7.2 when we compare our
own heuristic against them.

4 Dataset and Methodology

To start, we were given 241 Bitcoin addresses and 20,016
Bitcoin transactions by Chainalysis, a company that provides
blockchain data and analysis to businesses and government
agencies.1 The addresses represented true positive clusters,
in the sense that Chainalysis had manually verified that all
the addresses in the same co-spend cluster as this address
really did belong to the same service (typically by confirming
directly with the service). The transactions were all Coinjoins
and thus represented false positive clusters, meaning all of the
addresses in the resulting co-spend cluster would not actually
belong to the same service. Each address formed a distinct
cluster, and there was no overlap between the addresses in
the true positive (TP) clusters and the ones used as inputs in
the false positive (FP) transactions. This ground-truth dataset
was necessary for evaluating our heuristics, and would not
have been possible to get at this scale without working with
Chainalysis or directly with the services themselves. None
of the clusters represented individual users, and we had no
additional information about the entities represented by the
clusters (e.g., the name of the service).

From this initial dataset, we created clusters using the co-
spend heuristic and represented each cluster C as a tuple

1https://www.chainalysis.com/
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(Caddr,Ctx) where Caddr is the set of all addresses in the clus-
ter and Ctx is the set of all transactions initiated by one or
more addresses in Caddr. This resulted in 241 TP clusters and
16,974 false positive FP clusters. We describe in Section 4.2
how from this initial dataset we created a more balanced
dataset of 60 true positive (TP) and 60 false positive (FP)
clusters that we then used in the remainder of our analysis. In
order to do so, we first describe the features we defined for
transactions, addresses, and the overall cluster.

4.1 Features

We consider features of three different types of objects within
Bitcoin: transactions, addresses, and clusters. These features
are largely defined by the wallet software used by a given en-
tity and the decisions they make in scripting their transactions,
and as we will see the set of possible features is largely stable
within even large clusters. This consistency is crucial in the
algorithms we develop for following peel chains in Section 5.
Our set of chosen features is based on Bitcoin usage today,
but we stress that new features can be incorporated as Bitcoin
evolves without changing our overall approach.

4.1.1 Transaction features

Every Bitcoin transaction has a different set of features, ac-
cording to both the action it is performing and the wallet
program and version used to generate it. We consider the
following four features.

Replace-by-fee/sequence number. At any given point in
time, there can be multiple versions of the same transaction
in the Bitcoin network; for example, if a user broadcasts a
transaction to the network but it never gets included in a
block, they may broadcast a new version with an increased
fee in the hopes of increasing its chances. The sequence
number helps identify different versions of a transaction,
with a higher sequence number indicating that the transac-
tion is more recent. If a user does not want transactions to
be able to be replaced they can thus set the sequence num-
ber to be the maximum value (0xffffffff). The sequence
number is set for each transaction input, and the transaction
is considered to be replaceable if any of its inputs have
a sequence number less than this maximum value [17].
We thus set this feature to be true for a transaction if it is
replaceable and false if it is not.

Locktime. A transaction can set a locktime (or time lock)
to indicate that it cannot be spent before a block at some
height has been mined. We set this feature to be true if a
locktime has been set and false if not.

Version. The version of a transaction, which is either 1 or 2,
determines the rules used to validate the transaction [12].

Address type TP (%) FP (%)

pubkey hash (compressed) 41.15 1.19
pubkey hash (uncompressed) 0.0 0.010
witness pubkey hash (compressed) 5.76 37.44
witness pubkey hash (uncompressed) 37.04 61.36
multisig (2/2) 5.6 0.0
multisig (2/3) 2.8 0.0
multisig (3/4) 0.1 0.0
multisig (2/6) 0.24 0.0
SegWit multisig (2/2) 2.22 0.0
SegWit multisig (2/3) 5.12 0.0

Table 1: Types of addresses found across all clusters.

SegWit. SegWit (Segregated Witness) [29] allows a transac-
tion to be separated into its semantic data (i.e., information
about who is sending and receiving bitcoins) and its signa-
ture data. A transaction can indicate if it uses SegWit by
setting its fifth byte to 0x00. We set this feature to be true
if SegWit is enabled and false if not.

We thus represent the features of a transaction tx as a
4-tuple containing binary values (1/2 for the version and
true/false for the rest) in each entry. We denote by featurestx
the function used to extract these features from a transaction.

4.1.2 Address features

The BlockSci tool [23] categorizes Bitcoin scripts into ten
generic types: pubkey, pubkey hash, witness pubkey hash,
multisig, multisig pubkey, script hash, witness script hash, wit-
ness unknown, non-standard, and nulldata (with the witness
prefix indicating that it uses SegWit). Some of these cate-
gories can be further broken down according to whether the
address is compressed or uncompressed. To briefly explain
some of the more common types, the pubkey format allows
users to send coins to a public key. Both pubkey hash and
witness pubkey hash allow users to instead send coins to the
hash of a public key. The script hash and witness script hash
formats allow users to send coins to the hash of an arbitrary
script. These coins can then be spent only by the owner(s)
of the underlying script. A common script in Bitcoin is an
m-of-n multisig. Using a multisig address, a user or set of users
can require that at least m of the n available keys specified in
the script must sign a transaction in order to spend the coins
from that address.

Across our set of 246,600 addresses, we identified 10 dis-
tinct combinations of these categories that were used, as sum-
marized in Table 1. We thus represent the features of an ad-
dress as its address type, which takes one of these ten values.
We denote by featuresaddr the function used to extract the
feature from an address.
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4.1.3 Cluster features

Each cluster contains a set of addresses and a set of trans-
actions. From these sets Ctx and Caddr, we can extract the
relevant features (which we did using BlockSci) to build the
sets TFC and AFC of all transaction and address features
present in the cluster.

In addition to these sets of features, we define for each
cluster a change strategy, which we denote by changeC. This
cluster-level feature considers the pattern, if any, the trans-
actions in this cluster exhibit when forming change outputs.
We identify a change output in a transaction in Ctx if there
is exactly one output whose address belongs to the cluster
(i.e., is in Caddr). If there are zero or multiple such addresses
then we ignore this transaction for the purposes of setting the
change strategy.

Intuitively, some wallet software may send the change in
a transaction to a specific output index by default; e.g., the
first or last output. As many entities are likely to use scripts
or other automated methods to form transactions, it may be
the case that their transactions thus have patterns in terms of
the index of the change output. To this end, we define four
different values for the cluster’s changeC:

changeC =−1. For every transaction in Ctx with a single
identified change output, it was always at the last index.

changeC = 0. For every transaction in Ctx with a single iden-
tified change output, it was always at the first index.

changeC = 1. For every transaction in Ctx with a single iden-
tified change output, it was always at either the first or the
last index.

changeC = None. There was at least one transaction in Ctx

that did not follow the patterns above; i.e., with a single
identified change output that was at neither the first nor the
last index.

4.2 Creating a cluster dataset
In building a dataset of clusters, our goal was to have it be
as balanced as possible, in terms of the features introduced
in the previous section. This was particularly important in
our validation of the co-spend heuristic in Section 6, in which
we differentiate between TP and FP clusters based on their
features and need to avoid overfitting. Concretely, we focused
on creating a balance between true and false positives for the
following three parameters: (1) the number of clusters in each
category, (2) the sizes of both Caddr and Ctx, and (3) the period
of time in which which the cluster was active. We refer to the
last property as the cluster’s lifespan. The first two properties
are generally important in creating a balanced dataset, and
this last property is also essential as behavior in Bitcoin trans-
actions has changed significantly over time. Ensuring that the
lifespans of TP and FP clusters had a significant overlap was

thus the only way to ensure a fair comparison; e.g., making it
so we could not trivially distinguish because all TP clusters
had one transaction feature set to true and all FP clusters had
it set to false.

To start, we set a minimum threshold of 10 for both Ctx

and Caddr and discarded all clusters that were smaller. This
left us with 183 TP clusters (out of 241) but only 75 FP clus-
ters (out of 16,974). This overrepresentation of singleton FP
clusters was largely due to the way in which we obtained data
from Chainalysis, as we asked for false positive transactions
(i.e., Coinjoins) but true positive addresses that would form
a meaningful cluster (i.e., not a singleton). Additionally, the
vast majority of the inputs to the Coinjoin transactions were
one-time addresses, meaning the resulting cluster was such
that |Ctx|= 1. After obtaining these 183 TP and 75 FP clus-
ters, we further observed that they were highly imbalanced in
the parameters we considered, as shown in Figure 1a.

This figure shows that not only are there more TP clusters,
but also they are much larger on average than the FP clusters.
For example, in our initial dataset, TP clusters had up to 3.2M
transactions (with an average of 56K) whereas FP clusters
had only up to 283K (with an average of 19K). To this end,
we removed the 108 biggest TP clusters from our analysis
(in terms of |Caddr|+ |Ctx|). This created a dataset of 75 TP
and 75 FP clusters, each of comparable size (in terms of both
Caddr and Ctx), as we see in Figure 1b.

This approach created a balance in terms of the first prop-
erty, but did not address the issue of having overlapping lifes-
pans: as we see in Figure 1c, there are several TP clusters
whose lifespan ended before any FP clusters even began. We
can also see this has a direct impact on our transaction fea-
tures, as several of our TP clusters existed before SegWit was
introduced but none of our FP clusters did. To address this
imbalance, we removed the TP clusters whose lifespan didn’t
overlap with the lifespan of any FP clusters. We ended up
with 60 TP and 60 FP clusters that were balanced in all three
properties, as shown in Figure 1b and Figure 1d. In the end,
all clusters had between 15 and 3415 addresses (with an aver-
age of 258.6 for FP clusters and 642.6 for TP ones), between
11 and 3448 transactions (with an average of 307.7 for FP
clusters and 692.4 for TP ones), and operated at some point
between April 2017 and April 2021.

Feature statistics. In terms of transaction features, we
found each of the possible 16 4-tuples in at least one of our
clusters. Most clusters (76 out of 120) used only a single com-
bination of transaction features, however, and all clusters used
six or fewer. The average number of features was 1.55 for FP
clusters and 1.67 for TP clusters. This suggests that clusters
are largely consistent in their transaction behavior. We found a
similar level of consistency when looking at address features:
56.7% of TP clusters and 53.3% of FP clusters used only one
address type, and all clusters used three or fewer.

We found that 18 of our TP clusters had a completely
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Figure 1: Balancing the sizes (Figures 1a and 1b, with the y-axis on a log scale) and lifespans (Figures 1c and 1d) for our true
positive (TP) and false positive (FP) clusters. Figures 1a and 1c represent the cluster sizes and lifespans before balancing, and
Figures 1c and 1d represent these values after balancing. In Figure 1c, the vertical line represents the date on which SegWit was
introduced.

consistent change strategy (changeC = 0 or −1) and 30 had
changeC = 1; this left 12 with no change strategy. As might
be expected, FP clusters were less consistent (given that they
actually contained different sets of users): 34 had no identifi-
able change strategy, 8 had a completely consistent change
strategy, and 18 had changeC = 1.

To understand the overlap in features across different clus-
ters, we looked at the Jaccard similarity between the sets of
5-tuples representing their combined transaction and address
features. We found that the average Jaccard similarity across
all pairs of clusters was 0.13, which suggests that they are
relatively dissimilar in these features. There were several no-
table exceptions, however, and in particular cases where the
features were not only overlapping but in fact identical. For
example, there were 26 clusters whose transactions all had the
same combination of features (Version 1 and SegWit-enabled
transactions that had no locktime and were not replaceable)
and whose addresses were all of the same type (uncompressed
witness pubkey hash). This is unsurprising as it represents the
default setting of the standard Bitcoin wallet software.

5 Following Peel Chains

In this section, we define the concept of a peel chain and
present our heuristics for identifying them, according to the
features defined in the previous section.

5.1 Defining a peel chain
The concept of a peel chain was first introduced by Meikle-
john et al. [31] as a series of transactions originating from
a transaction with a relatively large UTXO as input (i.e., a
UTXO with a large associated value). When this UTXO is
spent it creates two outputs: a small one representing a pay-
ment to an external entity and a larger one representing the

change. This pattern can then be repeated many times, with
each hop in the chain slowly “peeling” smaller values from
the original UTXO, until the remaining change amount is
small (at which point it can be combined with other small
UTXOs to create a large one and start the process over again).
In this work we consider more general peel chains in which
transactions might have more than one input and more than
two outputs. In fact, our only requirement is that each adjacent
hop in the peel chain is connected by a change output.

Peel chains are in some sense fundamental to UTXO-based
cryptocurrencies, which do not allow the partial spending of
transaction outputs. Given that it is highly unlikely for an
entity to have the exact amount they want to pay someone
associated with a UTXO, their payment inevitably forms a
change output that can in turn be used as input to a subsequent
payment. A second reason that peel chains are very common
in Bitcoin is more specific to bigger services, as we explore
in Section 6.2. In particular, it would be time-consuming,
error-prone, and inefficient for big services to craft thousands
of transactions manually. For these reasons, they naturally
perform transactions using scripts. This automated behavior
not only creates long peel chains but also creates patterns that
make these peel chains easier to identify and follow.

5.2 Identifying inputs and outputs

In order to follow peel chains, the first step is to link together
transactions according to their change outputs. Concretely,
this means introducing two algorithms: findNext, which aims
to identify the unique change output in a transaction, and
findPrev, which aims to identify the input(s) in a transaction
that originate from transactions conducted by the same en-
tity (as opposed to transactions in which that entity received
coins from another one). In its goal, findNext is comparable
to previous work that developed change identification heuris-

6



tics [2,10,14,31]. As we describe in more detail in Section 7.2,
however, these previous works identify change outputs based
on the freshness of output addresses and the output values. In
contrast, findNext focuses on the index of the output (accord-
ing to changeC), the cluster’s features (according to TFC and
AFC), and the next hops of every output that has been spent.

We formally specify findNext and findPrev in Algorithms 1
and 2. Intuitively, both start with a transaction tx ∈ Ctx, and
aim to output either the next hop in this transaction’s peel
chain (findNext) or the previous hops (findPrev), according
to the features exhibited by the cluster.

findNext. For findNext, we first identify the set of outputs
that might represent the change output, according to the clus-
ter’s change strategy changeC (lines 1–6 in Algorithm 2).
If the change strategy is associated with a single output in-
dex i (either 0 or −1) then we include only that output in this
candidate set, while if it 1 we include both the first and last
outputs and if it is None we include all outputs. Next, for each
candidate change output output we check to see if:

1. The output is spent, meaning output.next 6=⊥.

2. The address has a type that exists within the cluster,
meaning featuresaddr(output.addr) ∈ AFC.

3. The next hop of the output has features that exist within
the cluster, meaning featurestx(output.next) ∈ TFC.

If each of these checks pass, we add the transaction in
which this output is spent to a set representing the possible
next hops in the peel chain (line 13). At the end, if there is
only one candidate transaction then we output it as the next
hop. If there are zero or multiple choices then we output ⊥ to
indicate that we are unsure of the change output.

We experimentally evaluate the accuracy of findNext in
Section 7.2, where we see it produces a very low number of
false positives. To see why, we consider that findNext incor-
rectly identifies the next hop in a peel chain only if two things
happen simultaneously: (1) the transaction either doesn’t pro-
duce a change output or the cluster deviates from its known
address and transaction features only in spending the change
output in tx, and (2) exactly one output that meaningfully
receives coins in tx has the same address features as C, and
produces the same transaction features when it spends the
received coins. In other words, an entity would have to change
its established behavior at the same time as it sends coins to
another entity with the exact same features. For the first point,
as we discussed above it is unlikely for a transaction to have
no change output given that one bitcoin is highly divisible (to
the eighth decimal place) and an entity would have to have
the exact amount (plus fees) that they wanted to pay someone
associated with a UTXO. As we saw in Section 4.2, clusters
are highly consistent in both their address and transaction

Algorithm 1: findNext

Result: nextTx
Input : tx, changeC, TFC, AFC

1 if changeC ∈ {0,−1} then
2 candidates←{tx.outputs[changeC]}
3 else if changeC = 1 then
4 candidates←{tx.outputs[0], tx.outputs[−1]}
5 else
6 candidates← tx.outputs
7 nextTx← /0

8 for output ∈ candidates do
9 bnext← (output.next 6=⊥)

10 baddr← (featuresaddr(output.addr) ∈ AFC)
11 btx← (featurestx(output.next) ∈ TFC)
12 if baddr∧bnext∧btx then
13 nextTx← nextTx∪{output.next}
14 if |nextTx|= 1 then
15 return nextTx[0]
16 else
17 return ⊥

features, which also makes deviations in their behavior un-
likely. For the second point, we also saw in Section 4.2 that
clusters are largely non-overlapping in their behavior (with
some exceptions).

In terms of false negatives, findNext fails to identify the
change output if either (1) it finds no suitable candidate or
(2) it finds more than one candidate. In the first case, the
cluster would need to either use a different change strategy
changeC (putting the change output at a different index from
expected) or use a different set of features in both the address
and the next transaction. In the second case, there needs to
be at least one receiving output that behaves in the same way
as C, in terms of having the same address and transaction
features. It also needs to be the case that C has changeC = 1
or changeC = None, because in the case where changeC = 0
or changeC = −1, there is no chance of findNext finding
multiple candidates since only one will be investigated. As
with false positives, the consistent and distinct qualities of
cluster features thus suggest that false negatives are relatively
unlikely to occur as well.

findPrev. Our second algorithm, findPrev, looks at the in-
puts to a transaction rather than at its outputs. In particular,
while the co-spend heuristic tells us that each input belongs
to the same entity, it may be the case that some of these in-
puts represent coins received from other entities. Our goal
is to be able to follow peel chains (which are created by a
single entity) backwards, which means findPrev must thus
isolate the previous transactions in which these inputs were
used as change outputs. This means that we first map each
input to a transaction tx to the transaction in which it was
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Algorithm 2: findPrev

Result: prevTxs
Input : tx, changeC, TFC, AFC

1 candidates0,candidates−1,candidates← /0

2 for input ∈ tx.inputs do
3 if featurestx(input.prev) ∈ TFC then
4 i← input.prevIdx
5 if i ∈ {0,−1} then
6 candidatesi← candidatesi∪{input.prev}
7 candidates← candidates∪{input.prev}
8 if changeC ∈ {0,−1} then
9 return candidateschangeC

10 else if changeC = 1 then
11 return candidates0∪ candidates−1
12 else
13 return candidates

created (input.prev) and to its index in the output list of that
transaction (input.prevIdx). We next filter out all previous
transactions that do not match the transaction features of the
cluster (line 3 in Algorithm 2), and then within this filtered
set keep track of all transactions (candidates), in addition to
all transactions in which one of the inputs was created at
either the first or last index (candidates0 and candidates−1
respectively). Then, as with findNext, we consider the change
strategy defined by the cluster and use it to decide which of
these candidate sets to return (lines 8–13).

The potential for false positives in findPrev is significantly
higher than for findNext, as the algorithm returns multiple
transactions rather than a single one. Thus, false positives
can occur if any of the entities sending coins in a previous
hop exhibits the same transaction features and follows the
same change strategy. In other words, we rely more heavily
on cluster features being distinct (as compared to findNext
where we also could count on their consistency), which as
we saw in Section 4.2 is not always the case. We discuss this
further in Section 7.

In terms of false negatives, findPrev fails to identify a
input.prev originating from the same cluster only if that
input.prev deviates in its transaction features or follows a
different changeC. Here again we can rely on the consistency
of cluster transaction features to argue that this is relatively
unlikely to happen.

5.3 Following transactions

With findNext and findPrev in place, we can define algo-
rithms for following peel chains forwards (followFwd) and
backwards (followBkwd). The ability to follow a transaction
both forwards and backwards allows us to capture the full peel
chain, regardless of the position of our starting transaction.
These algorithms are defined in Algorithms 3 and 4.

Algorithm 3: followFwd

Result: fwdTxstx,heur
Input : tx, heur, Ctx, changeC, TFC, AFC

1 fwdTxstx,heur← /0

2 txcur← tx
3 while txcur 6=⊥ do
4 if heur = validation ∧ txcur /∈ Ctx then
5 break
6 fwdTxstx,heur← fwdTxstx,heur∪{txcur}
7 txcur← findNext(txcur,changeC,TFC,AFC)

8 return fwdTxstx,heur

Algorithm 4: followBkwd

Result: bkwdTxstx,heur
Input : tx, heur, Ctx, changeC, TFC, AFC

1 bkwdTxstx,heur← /0

2 bkwdScope←{tx}
3 while |bkwdScope|> 0 do
4 txcur← bkwdScope[0]
5 bkwdTxstx,heur← bkwdTxstx,heur∪{txcur}
6 prevTxs← findPrev(txcur,changeC,TFC,AFC)
7 if heur = validation then
8 prevTxs← prevTxs∩Ctx

9 bkwdScope← bkwdScope∪{prevTxs}
10 return bkwdTxstx,heur

followFwd. To follow a transaction tx forwards, followFwd
continues going to the next hop in the peel chain, as identified
by findNext, until the peel chain ends or findNext otherwise
cannot identify a next hop. Along the way it adds the hops
to a set of transactions fwdTxstx, which it outputs at the end.
Line 4 of this algorithm includes a check that is specific
to our validation heuristic; we describe this modification in
Section 6.2 when we present that heuristic.

followBkwd. Following transactions backwards is more in-
volved than following them forwards, as findPrev outputs a
set of transactions rather than a single one. We can think of
followBkwd as performing a breadth-first search: it defines a
set of transactions to follow, which is initially set to be just
the starting transaction (line 2 of Algorithm 4). As long as
there are transactions left to follow, it picks the first of these,
adds it to the set, and looks at its previous hops according to
findPrev (line 6). It then adds these previous hops to the set of
transactions (line 9) and continues. Again, this algorithm con-
tains an additional check in the case of the validation heuristic
(line 7), which we describe in Section 6.2.
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6 Cluster Validation

Currently, the clusters output by the co-spend heuristic are
largely treated as ground truth, despite the fact that there
exist techniques such as Coinjoin that invalidate them. In this
section, we thus investigate ways to improve one’s confidence
in the results of this heuristic. In particular, we explore two
approaches, each of which is applicable in a different scenario.

Our first approach, described in Section 6.1, is a classifier
for co-spend clusters that attempts to distinguish between TP
and FP clusters. This type of classifier can implicitly be re-
alized by a Coinjoin detection mechanism, such as the one
implemented in BlockSci, and indeed when we implement this
approach we find it achieves 87.5% accuracy. Our classifier,
which is based on Random Forest, achieves 89.2% accuracy.
It achieves, however, a much lower false negative rate (10% as
compared to 20%), which in turn lowers the risk of an investi-
gator or researcher making an incorrect assumption about the
results of the co-spend heuristic. Furthermore, our classifier
is more robust as it depends on the behavior of entities in
general rather than just the characteristics of a single Coinjoin
transaction (which can be changed by a Coinjoin service such
as JoinMarket to avoid detection).

Our second approach, described in Section 6.2, links to-
gether transactions within the same co-spend cluster that our
heuristics from Section 5 identify as belonging to the same
peel chain. In doing so, we increase our confidence that these
transactions were indeed performed by the same entity. More-
over, if we run it for every transaction in the cluster then we
see that TP and FP clusters have different behaviors in terms
of how many distinct peel chains they contain.

6.1 Cluster classification

Based on the transaction characteristics defined in Sec-
tion 4.1.1, we computed aggregated cluster-level features. For
the SegWit and locktime features, we calculated the fraction
of transactions in the cluster that had this value set to true
(prop_segwit_enabled and prop_locktime_enabled re-
spectively). For the version feature, we calculated the propor-
tion of version 1 transactions (prop_v1). We did not compute
a feature column for version 2 transactions to avoid multi-
collinearity issues, since prop_v2 is given by 1−prop_v1.
Within each cluster we also determined the proportion of all
available input address types (as defined in Section 4.1.2).
These values were aggregated to a single feature using the
maximal value (address_type_max_prop). Finally, the clus-
ter feature (defined in Section 4.1.3) was transformed into two
classes (change_strategy): no change strategy (changeC =
None), or an identified change strategy on either the first or
last output (changeC ∈ {−1,0,1}).

Due to the small sample size (60 FP and 60 TP samples),
we selected classification models that do not require extensive
hyper-parameter tuning and tend to perform very well in a

Statistic RF Conditional RF

Mean accuracy 0.892 0.842
Standard error 0.017 0.031

Table 2: Performance of our Random Forest model after 5-
fold cross-validation.

default setting [28]. We applied Random Forest (RF) [6, 28],
which is a popular and powerful machine learning method.
RF is an advancement of single classification and regression
trees (CART [7]). As compared to CART, RF can handle
a large number of covariates effectively without overfitting
and are able to account for correlation as well as interactions
among features. Another important property of RF is that it
immediately provides internal variable importance measures
that can be used to rank covariates. For fitting of the CART-
based RF approach, we used the implementation in the R-
package ranger [52]. As an alternative, we also applied the
cforest implementation from the package party [47, 48].

6.1.1 Classification results

We fit RF models with 500 trees to the dataset consisting of the
features described above and using the cluster type (TP/FP) as
the target variable. First, we fit the models to the full dataset
and analyzed the intrinsic variable importance measures. Ac-
cording to both the CART-based RF and the cforest model,
the most important features were the proportion of SegWit
transactions, the proportion of version 1 transactions, and the
proportion of transactions with enabled locktime.

For training and testing of the models we implemented
a cross-validation (CV) procedure. Accuracy, meaning the
proportion of correctly classified instances, was chosen as a
model performance evaluation metric. The mean accuracy
values and their associated standard errors after a 5-fold CV
are shown in Table 2, and the ROC curve is in Figure 2. We
obtain a mean accuracy between 84% and 89%. According to
the standard errors, these values are also relatively stable on
the CV-testing folds.

Overall, while our classifier would of course benefit from
extended experimentation with a larger dataset, these results
and the high level of accuracy suggest that it would be pos-
sible to deploy this method in the manner suggested earlier
in this section; i.e., for an investigator to use it to gain some
confidence in the results of the co-spend heuristic at an early
stage in an investigation.

6.1.2 Comparison with BlockSci

To compare our approach to the current state of the art, we ex-
plore the Coinjoin detection feature available in BlockSci [23]
as the function isCoinjoin. This function works at the level
of transactions, meaning given a transaction it outputs 0 or
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Figure 2: The ROC curve for our Random Forest model
(AUC=0.923).

Truth Class error

Prediction FP TP
FP 54 7 11.5 %
TP 6 53 10.2 %

(a) Confusion matrix of our RF model (summed values after 5-
fold CV).

Truth Class error

Heuristic FP TP
FP 48 3 5.9 %
TP 12 57 17.4 %

(b) Confusion matrix for the BlockSci classifier.

Table 3: Comparison of classification results.

1 according to whether or not it seems to be a Coinjoin, as
identified by a heuristic developed by Goldfeder et al. [14].

Using this function, we define a cluster-level classifier by
saying that if any transaction in the cluster is flagged as a
Coinjoin, the entire cluster is a false positive. We tested this
classifier on our full dataset of TP and FP clusters; the re-
sults are in Table 3b. As we can see, both BlockSci and our
classifier have high accuracy (87.5% and 89.2% respectively),
with BlockSci having twice as many false negatives and our
classifier having more false positives (7 as compared to 3).
As argued earlier, the false negative rate is more crucial in
our imagined use case, as a false negative could cause an
investigator to believe that a cluster represents a single entity
when in fact it does not. Furthermore, the fact that our clas-
sifier is based on all of the features within a cluster makes it
more robust than our constructed BlockSci classifier, which

depends only on the features of a single transaction and can
thus be easily evaded by constructing Coinjoins without these
specific features.

6.2 A validation heuristic
Our second method for increasing the confidence we have in
a cluster focuses less on the cluster as a whole and more on
the connections between individual transactions. In particular,
we utilize the heuristics defined in Section 5 to partition the
transactions of a cluster into peel chains.

6.2.1 Defining the heuristic

Our starting point is a co-spend cluster C, represented by the
tuple (Caddr,Ctx). Next, we run followFwd and followFwd
with the parameter heur = validation for every tx ∈ Ctx. Cru-
cially, this parameter means that we do not follow any trans-
actions that are not already in the cluster. For a given tx this
gives us the sets fwdTxstx,validation and bkwdTxstx,validation,
which collectively represent all transactions within the cluster
that lie along the same peel chain as the starting one. We
denote the union of these two sets as PchainV(tx).

After obtaining the set {PchainV(tx)}tx ∈ Ctx of all such
peel chains, we noticed that some peel chains contained over-
lapping but not identical sets of transactions, according to the
starting transaction tx. We thus merged these overlapping peel
chains in a transitive fashion to end up with a set of distinct
peel chains, PchainV(C), that is a partition of all transactions
in the cluster. To measure the overall tendency for a cluster to
form peel chains, we use the value ValC = |PchainV(C)|

|Ctx| , which
is closer to 1 if a cluster consists of many peel chains and
closer to 0 if it consists of fewer.

Our validation heuristic then says that for any two transac-
tions tx1, tx2 ∈ PchainV for PchainV ∈ PchainV(C) (i.e., two
transactions that are part of the same cluster and part of the
same peel chain), we can have higher confidence that they
were performed by the same entity than for two transactions
tx1, tx2 ∈ Ctx.

6.2.2 Applying the heuristic

It is not possible to assess the accuracy of our validation
heuristic directly, as we do not have the relevant ground-truth
data. For our FP clusters, for example, we knew that they
contained at least one Coinjoin but did not have any infor-
mation about the other transactions (and indeed for some FP
clusters it was clear they contained other Coinjoins beyond
the ones we were given). For our TP clusters, we knew that
all transactions were performed by the same entity but not if
they represented the same peel chain.

Instead, we used our validation heuristic to understand the
behavior of our TP and FP clusters. To this end, we ran the
validation heuristic for each of our clusters and looked at the
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Figure 3: For our 60 TP and FP clusters, the distribution of
|ValC| (the color of the bar), with the clusters ordered from
left to right by |Ctx| (the height of the bar, on a log scale.

resulting value of ValC. As our results in Figure 3 show, the
FP clusters had significantly higher values of ValC on average:
0.43 as compared to 0.14 for TP clusters. Overall, ValC did
not increase with the size of the cluster, despite the possible
expectation that clusters with a higher number of transactions
would form a higher number of peel chains. This suggests
instead that bigger clusters tend to be more predictable in
terms of their behavior, which is perhaps not surprising if we
consider that the operators of these big clusters use automated
scripts in order to form their transactions.

In terms of using this heuristic in practice, there are cur-
rently several nested services [8] that operate using accounts
maintained at a variety of different exchanges. Using just the
co-spend heuristic, these nested services would thus appear
to be operated by the same entity as the exchange they use.
Using our validation heuristic, however, it would be possible
to separate out the activities of these nested services (which
would likely form their own peel chains) from the activities
of the exchange itself.

Furthermore, while we defined our validation heuristic for
pairs of transactions, as we can see in Figure 3 a lower value
of ValC can also increase our confidence in the cluster overall.
This is difficult to quantify given our current source of ground
truth, however, so we leave as open work a more thorough
evaluation of the impact of this heuristic on overall cluster
confidence.

7 Expanding Clusters

Our expansion heuristic is structurally similar to our valida-
tion heuristic, in that it is also based on the ability to identify
peel chains, but it has a different goal: to identify new trans-
actions that were not already in the cluster but for which we

nevertheless have high confidence that they were formed by
the same entity. In this approach, this heuristic more closely
resembles previous change heuristics in the literature.

7.1 Defining the heuristic

As with the validation heuristic, our starting point is a co-
spend cluster C represented by a tuple (Caddr,Ctx). Next,
we run followFwd and followBkwd with the parameter
heur = expansion for every tx ∈ Ctx. This gives us the sets
fwdTxstx,expansion and bkwdTxstx,expansion for every tx, which
still represent the set of all transactions that lie along the same
peel chain as tx but crucially may contain transactions that
are not already in the cluster. We denote the union of these
sets, representing all identified transactions, as Txsexpansion
and denote by expansionC the set of newly identified trans-
actions; i.e., the ones that weren’t already in the cluster
(Txsexpansion \Ctx). Our expansion heuristic then says that
all transactions in expansionC were carried out by the same
entity represented by the cluster.

After defining this heuristic, our goal was to identify its ac-
curacy and effectiveness. To measure effectiveness we defined
the expansion factor Expsn as the increase of a cluster’s cov-
erage in terms of its number of transactions (100 · |expansionC||Ctx| ).
To measure accuracy, we treated as ground truth the set of tags
provided to us in the Chainalysis Reactor tool,2 which are tags
that are gathered internally by Chainalysis and from public
websites and documents. In particular, for each transaction in
expansionC, if Chainalysis had tagged it as belonging to an
entity then we considered it a false positive. If it had no tag for
the transaction, we considered it an unknown positive; i.e., we
could not be sure that the transaction was formed by the same
entity, but there was at least no evidence to the contrary. We
then considered the false discovery rate FDR as the number
of false positives divided by the size of expansionC (which
is the standard definition for false discovery rate if we treat
unknown positives as true positives).

In running the heuristic in its basic form, however, we en-
countered two problems. First, because previous transactions
were not filtered out in followBkwd in the way they were for
the validation heuristic, the set bkwdScope was significantly
larger and it became computationally infeasible to run the
algorithm for longer peel chains. Second, including so many
transactions also increased the possibility of encountering a
false positive, as discussed in Section 5.2, and thus made the
algorithm more prone to error. For both of these reasons we
decided to limit our expansion heuristic and only follow peel
chains forwards using followFwd.

After running this version of our heuristic, we achieved
an FDR of 0.62%, which was already quite low relative to
the other heuristics (as we see below in Section 7.2). Never-
theless, after manually inspecting some of the false positive

2https://www.chainalysis.com/chainalysis-reactor/
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Figure 4: Evaluation of findNext and the modified algorithm
findNext2 for the ten TP clusters with the initial highest FDR,
with the number of transactions on a log scale.

transactions, we observed that the main cause was following
outputs to transactions with multiple inputs that were in turn
part of a bigger cluster. We thus added an extra condition
into findNext requiring that the inputs in the next hop next
represented the entirety of the addresses in their cluster. In
other words, we added only those transactions whose inputs
were only ever co-spent with each other. We call this modified
change heuristic findNext2.

To illustrate the effect of this modification, Figure 4a shows
the ten TP clusters for which findNext had the highest FDR
and thus performed the least well. We then re-ran expansion
using findNext2; Figure 4b shows the results for the same ten
clusters. As we can see, in eight of the clusters, findNext2
eliminated all false positives, at the cost of missing a relatively
small number of unknown positives.

7.2 Evaluating the heuristic
In order to best evaluate our expansion heuristic, we sought
to compare it with previous change heuristics.

Androulaki et al. [2] identify the change output in a trans-
action tx if (1) the transaction has exactly two outputs, and
(2) it has the only fresh address in tx.outputs, meaning

Heuristic Expsn FDR

findNext 147.43 0.62
findNext2 124.46 0.02
Androulaki et al. [2] 93.03 64.19
Meiklejohn et al. [31] 79.94 51.64
Goldfeder et al. [14] 73.7 48.7
Ermilov et al. [10] 28.6 12.7

Table 4: The expansion factor and false discovery rate of
findNext and findNext2, as evaluated on our 60 TP clusters
and as compared with previous change heuristics. Both met-
rics are averaged across all clusters.

output.addr is the only one appearing for the first time in
the blockchain.

Meiklejohn et al. [31] identify the change output in a trans-
action tx if (1) it has the only fresh address in tx.outputs;
(2) tx is not a coin generation; and (3) there is no self-
change address in tx.outputs, meaning no address used as
both an input and an output.

Goldfeder et al. [14] use the same conditions as the one by
Meiklejohn et al. but additionally require that (4) the trans-
action tx is not a Coinjoin.

Ermilov et al. [10] were the first to consider not only the
behavior of the outputs and their addresses but also the
value they received. They identify the change output in a
transaction tx if (1) the transaction has exactly two outputs;
(2) the transaction does not have two inputs; (3) there is no
self-change address; (4) the output has the only fresh ad-
dress in tx.outputs; and (5) the output’s value is significant
to at least the fourth decimal place.

We implemented each of these heuristics and ran the expan-
sion heuristic on each of our 60 TP clusters using these algo-
rithms as well as our own algorithms findNext and findNext2.
The results, in terms of false discovery rate (FDR) and expan-
sion factor (Expsn), are in Table 4.

As Table 4 shows, our heuristics achieve both a signifi-
cantly lower false positive rate than all previous heuristics
and a significantly higher expansion rate. The heuristics from
Androulaki et al. and Meiklejohn et al. have the highest false
discovery rates, which is somewhat expected given that Bit-
coin has changed considerably since they were introduced in
2013. As might also be expected, the heuristic from Goldfeder
et al. achieved similar results to the one from Meiklejohn et
al., with the extra Coinjoin requirement reducing both the ex-
pansion and the false positive rates by a small amount. Finally,
Ermilov et al. achieved the lowest FDR of the four because
of the stricter conditions of their heuristic, but this came at
the expense of having the lowest expansion rate.
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7.3 Case studies
To test our expansion heuristic in practice, we sought to run
it for clusters that had been associated with known illicit
activities.

7.3.1 Bitcoin Fog

To start, we looked at a recent case against Roman Sterlingov,
who was accused of being the operator of the Bitcoin Fog
mixing service for almost 10 years [16]. According to the
affidavit of an IRS special agent [4], one of the main pieces of
evidence against Sterlingov was the connection of a deposit
made in 2011 to the Bitcoin Fog cluster (tx3 in Figure 5)
with a withdrawal from the Mt. Gox exchange cluster (tx1),
in which Sterlingov had an account using his real name.

We first checked whether or not the cluster that received the
coins from Mt. Gox was the same as the cluster that sent the
coins to Bitcoin Fog, in order to check if it would be possible
to link tx1 with tx3 based solely on the co-spend heuristic.
This was not the case, however, meaning it was necessary to
take intermediate transactions into account.

We then followed the funds from the Mt. Gox withdrawal
forwards, using followFwd, to see if we would reach the de-
posit to Bitcoin Fog. Both findNext and findNext2 failed
after only one hop, however, as the two outputs in tx2 had the
same address features and were spent in transactions with the
same features. Our algorithms were thus unable to isolate the
change output. These outputs were both furthermore fresh,
meaning it was their first appearance in the blockchain, so the
other change heuristics described in Section 7.2 also would
have been unable to follow the transaction forwards.

We thus worked backwards instead; i.e., we started with the
deposit to Bitcoin Fog and followed the funds backwards to
see if we would eventually find the withdrawal from Mt. Gox.
While running followBkwd for all transactions in a cluster was
computationally infeasible, it was possible to do it here as we
started with only a single transaction. Indeed, after seven hops,
we ended up with tx1 in our set bkwdTxstx3,expansion. While
this same analysis was likely done manually by the IRS agent,
this would quickly become infeasible if there were more inter-
mediate hops; furthermore, manual analysis is arguably more
error-prone as it is subject to human judgment.

While successful in this case, it is important to remem-
ber our discussion in Section 5.2 that followBkwd is more
prone to false positives than followFwd. Indeed, in 2011 all
transactions had the same features (as the ones we use were
not introduced until years later), meaning followBkwd could
continue backwards indefinitely without ever registering a
change in the entity performing the transactions. In our case,
the paths from the last three deposits in tx3 all led back to
the same origin (the second output in tx1), which in turn sent
all its money to these three inputs and two unspent UTXOs,
meaning we could be more sure in the link between the two.
While care must thus be taken when using followBkwd in this

way, applying it to a present-day scenario would likely be
more safe as transactions would be expected to have a more
diverse set of features.

7.3.2 Tracking ransomware addresses

We next looked at a broader set of addresses associated with
ransomware. On December 22, 2021 we scraped the ‘Ran-
somware Help & Tech Support‘ forum of Bleeping Com-
puter,3 a well known and actively used resource. We extracted
Bitcoin addresses from 627 posts between October 2013 and
December 2021. Of the addresses, 410 were distinct and 213
of these were never used, indicating that those victims did not
pay the ransom.

For the remaining 197 addresses, we began by identifying
their co-spend clusters. For 75 addresses, this cluster was a sin-
gleton, meaning it was a one-time address. For 102 addresses,
the cluster was relatively small (58 addresses on average).
For 20 addresses, the resulting cluster was very large, with
an average size of 2.9 million addresses. This suggested that
these addresses belonged to a large service rather than an
individual, indicating that those ransomware operators used a
custodial solution (such as an exchange) rather than run their
own wallet. To confirm this, we obtained the category of the
tags for these clusters from Chainalysis and found that they
all belonged to either an exchange, a hosted wallet service, a
mixing service, or a darknet market. We thus excluded these
clusters from our analysis.

The remaining 177 addresses were associated with 52 dif-
ferent ransomware families, with Dharma and Xorist appear-
ing the most frequently (with 38 and 11 addresses respec-
tively), and formed 169 distinct co-spend clusters. For each of
these clusters we applied and evaluated our expansion heuris-
tic (using findNext2). Across all clusters, the average expan-
sion factor was 257.5, with a maximum expansion factor of
3400 for a CrypMIC cluster. There were 32 clusters that
did not expand at all, belonging to 20 different ransomware
families; 23 of these were singleton clusters. In addition to
expanding the clusters, for each hop we followed we also col-
lected the counterparty addresses; i.e., the non-change output
addresses that represented the entity or entities to whom the
peel chain operator sent coins. In total we collected 91,493
counterparty addresses, 88,518 of which were distinct. The
vast majority (96%) of these counterparty addresses were
one-time addresses. This is consistent with them belonging
to services like exchanges, which typically provide one-time
deposit addresses, but does not clearly imply this as there are
many other reasons why one-time addresses occur.

While the original co-spend clusters were all distinct in
terms of their associated ransomware family, after perform-
ing the expansion heuristic the clusters of two ransomware
families (and only two) merged: Dharma and Phobos. When

3https://www.bleepingcomputer.com/forums/f/239/
ransomware-help-tech-support/
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tx1

tx3

tx2

Figure 5: Transactions representing the link between a withdrawal from Mt. Gox (tx1) and a deposit into Bitcoin Fog (tx3), with
an additional transaction of interest, tx2, highlighted in blue. The gray nodes represent multiple UTXOs of the same address and
transaction outputs with a dashed outline are unspent.

we analyzed the counterparty addresses of these clusters as
well, we observed that one of the addresses in the expanded
Phobos cluster was also one of the counterparty addresses for
a Dharma cluster; i.e., an address that our expansion heuristic
tagged as belonging to Phobos was also tagged as a coun-
terparty in a peel chain formed by the Dharma ransomware
operator. In fact, this address was a counterparty 83 times,
making it the most frequently used counterparty across all
Dharma peel chains. Furthermore, in several of the hops in
this peel chain both transaction outputs were fresh, meaning
they could not have been followed by any previous change
heuristic. While further investigation is of course needed, this
is in line with the hypothesis that these ransomware families
are operated by the same entity [37].

8 Limitations and Countermeasures

Both our heuristics and our classifier could be made signif-
icantly less effective by a motivated party randomizing the
features of their transactions and addresses. Performing this
randomization requires a relatively high level of technolog-
ical sophistication and familiarity with Bitcoin but does not
incur any computational or monetary costs, and would be
effective in making it either impossible to follow hops in a
peel chain (because their features would be randomized and
thus not match the expected behavior) or make the features
associated with a cluster so varied that any attempt to follow
its transactions would be likely to result in a false positive.
Transactions that are private and internal to the ledger of some
large entity (like an exchange) would also make it impossible
for our heuristics, which rely on public blockchain data, to
work. Given this, investigators should not rely on the output
of either our heuristics or our classifier as definitive evidence.

All previous clustering heuristics share these limitations,
however, and are still broadly effective in practice due to the
fact that many entities lack either the motivation or the techni-
cal ability to evade them. For example, exchanges and other

regulated entities have no reason to evade these heuristics, and
previous research has shown that the ability to identify their
transactions has a knock-on effect in terms of anonymity even
for participants who do actively try to perform such evasions.

Just as with previous clustering heuristics, the heuristics
presented here may also become less effective as Bitcoin
evolves. As discussed in Section 5.2, our heuristics produce
few false positives due to the fact that many entities are con-
sistent in their behavior and are largely non-overlapping in
terms of their features. If all entities had the same features
then our heuristics would stop working, and similarly if many
entities had the same features and were less consistent in
their behavior then our heuristics might produce more false
positives. As a concrete example, a recent pull request in the
main Bitcoin repository4 ensures that the type of the change
address matches exactly the type of the counterparty address.
If this version of the wallet software were adopted by every
entity in the Bitcoin ecosystem, it would make our address
heuristic entirely ineffective (although our transaction and
change heuristics would still work).

9 Conclusion

In this paper, we presented heuristics to expand and validate
the applicability of widely used Bitcoin clustering heuris-
tics, using a balanced ground-truth dataset to evaluate them.
While this research arguably further reduces anonymity in
Bitcoin, we believe that it ultimately benefits the develop-
ers and users of this project in revealing the extent to which
tracking flows of bitcoins is possible and motivating further
research into improved anonymity protocols. As an imme-
diate countermeasure, users who are concerned about their
privacy can switch to more privacy-focused cryptocurren-
cies such as Zcash and Monero, although previous work has
shown that even these are subject to some degree of de-
anonymization [24, 27, 34, 55].

4https://github.com/bitcoin/bitcoin/pull/23789
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