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Abstract
In this paper, we examine the potential of using a ther-
mal camera to recover codes typed into keypads in a va-
riety of scenarios. This attack has the advantage over
using a conventional camera that the codes do not need
to be captured while they are being typed and can in-
stead be recovered for a short period afterwards. To get
the broadest sense of how effective such an attack might
be, we consider a number of variables: the material of
the keypad, the user entering the code, the distance from
the camera to the keypad, and the possible methods used
to analyze the data. First, we present code recovery re-
sults from human review of our test data set; this pro-
vides us with a baseline for the overall effectiveness of
thermal camera-based attacks. Second, using techniques
from computer vision we automatically extract the code
from raw camera data, thus demonstrating that this attack
has the potential to scale well in practice.

As we will see, both human and automated attacks are
by and large successful in recovering the keys present in
the code, even a full minute after they have been pressed;
both methods are also able to determine the exact code
(i.e., including the order in which the keys were pressed)
for a smaller fraction of codes. Even without ordering,
however, the search space of possible keys is still vastly
reduced by knowing the keys pressed; for example, the
search space is reduced from 10,000 possible codes to
approximately 24 for a 4-digit code. In large-scale at-
tacks involving many unique codes, such as on ATM
PINs, our success rate indicates that an adversary can
correctly recover enough codes to make such an attack
economically viable.

1 Introduction
When deploying access control systems, designers must
balance technical security issues with the practical con-
cerns of cost and user acceptance. For these latter rea-
sons, keypad-based systems — in which an authorized
user is challenged to enter a secret numeric code — are
extremely popular for applications ranging from bank
ATMs to safes and car doors. Since such codes are typi-
cally entered in public view, however, they are open to
optical capture, either via “shoulder surfing” [9, 1] or
carefully placed cameras. Indeed, in recent years there
have been a rash of attacks (typically focused on bank

ATMs and gas stations) in which the user’s payment card
stripe is acquired via a “skimmer” while a pinhole cam-
era is used to capture the associated PIN as it is en-
tered [6]. In principle, the same style of attack could be
used to defeat any keypad-based access control system.

Although optical attacks have proved to be quite effec-
tive in practice, they do have two clear limitations: they
require real-time capture and they are vulnerable to oc-
clusion. For example, if the user’s body or hand blocks
the camera’s view of the keypad, then the attacker will
be unable to recover the PIN code.1 In 2005, however,
Michał Zalewski [12] described how thermal imaging
could be used to bypass both limitations. Demonstrat-
ing this technique using a keypad lock on an industrial
safe, he found that body heat from the user transferred
to the individual keys pressed and the resulting thermal
residue could persist over long durations (between five
and ten minutes, according to Zalewksi). Consequently,
an attacker could potentially approach the keypad after
the code was entered (and the legitimate user had left the
scene) and recover the code by viewing the keypad with
a thermal camera.

In this work, we examine the effectiveness of this
attack in more depth and in regards to three separate
considerations. First, we consider the impact of ma-
terials. Two types of keypads are commonly used in
practice: plastic keypads (usually with rubber or rub-
berized keys), and metal keypads; we wondered if the
material used would affect the results, and if so by how
much. Next, we considered the role of individual differ-
ences between people using the keypads, such as vari-
ations in body heat and keypress “technique.” In both
of these cases, our underlying concern was to under-
stand their impact on the window of vulnerability —
how long an attacker can wait before approaching the
keypad — since this ultimately determines the efficacy
of the thermal capture approach. Finally, we also con-
sidered whether or not such an attack could be scaled
efficiently. While a single high-value PIN (e.g., for a
door or safe) may be recovered by visually inspecting
thermal images, for a high-volume attack such as one
against an ATM, we presume that an attacker would pre-
fer not to classify hours of such footage by hand. We

1Indeed, a number of manufacturers now make keypad shrouds de-
signed to occlude most view angles.
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therefore consider whether the process of determining
the code can be automated, and if so if it is more or
less effective (e.g., accurate) than manual visual inspec-
tion.

For each of these underlying questions, we document
that the answer is in fact “yes”. In particular, we ob-
served that the material of the keypad has a tremendous
impact: the high thermal conductivity of metal keypads
rendered them virtually impervious to the attack, while
we obtained qualitatively similar results to Zalewksi us-
ing the plastic keypad (although in our measurements the
thermal residue persisted for far shorter). Similarly, indi-
vidual differences of the keypad operators plays a deter-
mining role as well. Some people were quite a bit more
warm-blooded than others, and some were more force-
ful in pressing the keypad; for the people with colder
hands or a lighter touch, the thermal results faded sig-
nificantly more quickly. Finally, we developed an algo-
rithm to completely automate the extraction of a code
using a single post-hoc frame from the thermal camera
footage, thus demonstrating that the attack has the po-
tential to scale.

In summary, while we document that post-hoc thermal
imaging attacks are feasible and automatable, we also
find that the window of vulnerability is far more modest
than some have feared and that there are simple counter-
measures (i.e., deploying keypads with high thermal con-
ductivity) that can shrink this vulnerability further still.

2 Attack Scenarios
As mentioned in the introduction, thermal cameras have
a clear advantage over conventional cameras for the pur-
poses of capturing codes: conventional cameras need
to film the code as it is being typed, whereas thermal
cameras can recover the code for some time afterwards.
There are of course prevention methods that a user might
in turn take against thermal camera-based attacks (for
example, continuing to press the keypad even after he
has entered the code, or simply resting his whole hand
on the keypad); nevertheless, we expect that all but the
most paranoid of users do not take them (at least not at
present), and so the advantage over conventional cam-
eras is still meaningful. We outline two main categories
in which the advantage is most useful below, and also
discuss the differences between the required attacks.

ATM PINs. When combined with a card skimmer,
conventional cameras installed at ATMs have already
proved to be quite effective in stealing people’s account
information. Using a thermal camera instead provides an
attacker the ability to recover the code even in the cases
where, for example, a user’s body is blocking the keypad
throughout the transaction, or he just covers the keypad
with his hand as he types in the PIN. Attackers there-
fore gain an extra degree of flexibility in terms of camera

placement, as it is no longer essential that the camera
have an unobstructed view of the keypad at all times.

In an ATM scenario, one could easily imagine an at-
tacker whose goal is to obtain as many PINs as possible.
In this type of attack, an automated code extraction pro-
cess would be highly beneficial; if the attacker simply
installed the camera (and presumably a skimmer as well)
and then used it to film the ATM keypad for a full day,
using an automated process would save him the trouble
of sifting through this entire day’s worth of footage. In
addition, the accuracy of the code extraction is not so
essential in this scenario. Even if the attacker does not
recover every single code, any non-trivial fraction of the
PINs entered in a full day’s worth of ATM usage would
still be quite valuable.

Door codes. Doors (or gates or elevators) may act as
access control points, in which entry to a given room,
building, etc. is meant to be restricted to authorized
users. Authorized users could share a special key or
ID card, have their biometric data stored in the system
for fingerprint or optical scans, or, in many cases, en-
ter a password. In this last case, an attacker using a
camera to capture an authorized user entering his code
would be able to gain entry to the restricted area of his
choice. Again, thermal cameras present a number of ad-
vantages here. Just as with the ATMs, users may block
the keypad (either intentionally or unintentionally) in the
process of entering the code, in which case an installed
conventional camera would be rendered useless. Addi-
tionally, if the keypad is protected by a hood or shroud,
an attacker would have trouble installing a conventional
camera angled in such a way that the whole keypad could
be seen. Thermal cameras, on the other hand, are able to
overcome this problem; in fact, a thermal camera would
not necessarily even need to be installed full-time. Af-
ter an authorized user has entered the correct password,
an attacker can simply walk up with the camera and film
the keypad; provided he does this soon enough after the
code has been entered (and that he knows no one will be
walking by!), he can safely recover the code.

In many ways, this attack is quite different from the
attack on ATMs. Beyond not even having to install a
camera, the vast majority of users will be entering the
same code (modulo frequent password changes); com-
pared with ATM keypads then, in which each user enters
a different code, the keypad for a door password will be
much less noisy. On the other hand, the accuracy of the
code extraction becomes essential here: if the attacker
does not recover the one single correct code, then he
has earned nothing; in other words, the “fraction” of the
codes which he now needs to recover is just 1. In addi-
tion, if the attacker has to walk up with a camera every
time he films the keypad then the automation of the at-
tack becomes less relevant, as he might as well also look
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Figure 1: The Dynasystems brushed metal keypad,
model 00-101088-008B.

Figure 2: The Diebold plastic ATM keypad with rubber
keys, model 19-019062-001M REV1.

at the footage.

3 Experiment Design
We can break our experiment design into two main cat-
egories: data collection and data analysis; we discuss
them both here.

3.1 Data Collection
We used an A320 FLIR camera running at 9Hz with the
built-in lens and the standard ExaminIR software for the
camera (see [5] for the full camera specifications). The
monthly rental rate for this camera is $1950 and the cost
to buy is about $17,950. None of us had any expertise
in the area of thermal cameras before this project began;
in fact, we were all completely new to both the hardware
and software involved.

For the keypads, we purchased one that was brushed
metal and one that was plastic with rubber keys. Both
were purchased from eBay and were (at least according
to the sellers) used in real ATMs. The metal keypad can
be seen in Figure 1 and the plastic one in Figure 2.

To conduct the experiments, we first placed the key-
pads in a vise to allow users to press the keypad without
having to steady it with their hand. We then placed the
camera on a tripod, first at a distance of 14 inches and
then at a distance of 28 inches from the keypad; as we

will see in the next section, this difference in distance
had little effect on our results, and so we posit that the
camera would have to be moved quite a lot further away
before results began to degrade. For each distance, we
had 21 people press 27 different codes chosen at ran-
dom; seven of the codes contained at least one duplicate
(e.g., 2227 or 0510) and the other twenty contained four
unique digits. Everyone pressed the keys in a way such
that while they were pressing the buttons their hand and
arm almost completely obscured the keypad in the frame,
although no one attempted to shield the keypad with their
other hand. As mentioned in the introduction, we found
in earlier trials that people reacted with the keypad in
very different ways: some had a light touch while oth-
ers were almost forceful in pressing the keys; similarly,
some people were very warm-blooded while others trans-
ferred barely any heat to the keypad. We therefore chose
to use such a wide variety of testers as a way of eliminat-
ing any of these potential human biases. We also ran the
full set of tests on the plastic keypad only; as mentioned
in the introduction, even filming the metal keypad was
problematic and so we performed only a few runs on it.

Figure 3: A frame as captured by the camera on one of
our runs, with the ten regions of interest indicated by the
colored boxes and the temperatures shown on the right.
This is the image captured immediately after the hand no
longer obscured the keypad from view; we can clearly
see that the four digits pressed were 1, 4, 5, and 8, and
furthermore that the 1 and 4 were likely pressed before
the 5 and 8 (the real code was in fact 1485).

To begin collecting our data, we first focused the cam-
era on the keypad and used the ExaminIR software to in-
dicate the ten regions corresponding to each of the ten
keys in which we were interested. For each run, we
recorded the keypad for approximately 10 frames (or 3
seconds) before the user entered the assigned code, and
then for 350 frames (or 100 seconds) after; a longer cali-
bration period would likely result in better accuracy, as it
would eliminate a fair amount of the noise we observed
in our results. Sample stills as captured by the camera
can be seen in Figures 3 and 4.
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Figure 4: Another frame captured, from the same run as
Figure 3, only this time 315 frames later (or 90 seconds)
and without the boxes drawn on. We can see that the 1,
4, and 5 digits are still the hottest keys, but that the 8 has
faded to the point where it is not clearly recognizable as
one of the keys pressed.

3.2 Data Analysis
To analyze the data, we broke the footage up into three
parts corresponding to before, during, and after the hand
was in the frame (i.e., the code was being entered). This
phase was done automatically: we wrote an algorithm to
determine when a large warm object (i.e., a hand) was
in the frame, and then broke the footage up accordingly.
The part before the hand was considered a calibration
period (which, as mentioned, lasted approximately 3 sec-
onds), while the part after was our main focus. By split-
ting the footage up in this way, we treat each run as if
the user properly shielded his code entry from view, thus
embodying the advantages of thermal camera-based at-
tacks (as we simply ignore any footage taken during the
code entry itself).

3.2.1 Manual Review

To establish a performance baseline, we manually re-
viewed every tenth frame and attempted to recover the in-
put code through inspection. By presenting the frames in
a random order, we minimized the effects of pre-existing
knowledge and allowed each frame to be considered on
its own. Note that extracting the code from each frame
individually is strictly harder than from a video where
patterns can be seen; better results might be possible by
observing temperature changes over time.

These results represent the efficacy of the easiest (but
most labor-intensive) attack possible: direct human inter-
vention. To alleviate the work this presents an attacker,
we next consider automated code retrieval.

3.2.2 Automated Review

For each code entry, we focused our attention on 10 pre-
determined regions of a video frame, corresponding to
the location of each button on the keypad (as demon-
strated by the boxes in Figure 3). Each individual camera

and keypad setup has its own particular regions, but they
are fixed as long as the camera stays in place.

We then examined the regions of interest (ROIs) dur-
ing the last frame of video before hand entry. This frame
was treated as a calibration frame, recording the state of
the keypad before user interaction. For each frame after
code entry, we compared each region against this cali-
bration frame in order to deduce button presses and or-
der. Surprisingly, in our tests, examining multiple frames
together provided similar accuracy to this per-frame ap-
proach, and we do not present results of full-video anal-
ysis here.

To do this frame-by-frame comparison, we applied
one of three possible methods: max, mean, binarize. As
we will see in the next section, the mean method far out-
performed both the max and binarize methods.

• Max. With the max method, each ROI was rep-
resented by the maximum temperature recorded
within the region. We found that, while this did
pull out high temperatures caused by user warmth,
it also fell prey to higher noise in blank regions.

• Mean. With the mean method, each ROI was
represented as the arithmetic mean of its tempera-
tures. This method did a far better job than the max
method of smoothing out noise; still, we observed
that old or light keypresses sometimes provided a
very small movement in the mean. Overall, how-
ever, this method achieved the best performance out
of the three.

• Binarize. Finally, for the binarize method, we com-
pared each pixel against its counterpart in the cal-
ibration frame. If its temperature increased, we
treated it as a 1; otherwise, as a 0. By then ap-
plying the mean method to the binarized image, we
can gain a measure of how much of the ROI has in-
creased in temperature.

Regardless of the method used to characterize ROIs,
we then assigned each ROI a weight by subtracting the
results for the calibration frame from the results in the
live frame. For codes with four unique buttons, we’re
done: we can simply sort by weight and choose the top
four ROIs in ascending order. Intuitively, the weight rep-
resents the temperature difference for the button, and the
last button pressed theoretically has the highest delta.

To support repeated buttons, however, we added in
one final tweak. Ideally, the weight of unpressed but-
tons should cluster around 0, regardless of which method
is used. Keeping this in mind, we therefore averaged
the weights of all ROIs, and considered only those
whose weight exceeded the group average to have been
pressed.
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4 Performance Evaluation
In this section, we examine the success with which our
human reviewer and automated system recovered com-
plete or partial information about entered codes. Using
our recorded videos, we applied the techniques described
in the previous section to each frame to determine which
buttons had been pressed. We then consider how effec-
tive these results might be for the various attacks de-
scribed in Section 2.

4.1 Results
Using the experiments and data analysis methods out-
lined in the previous section, we were able to determine
how accurate both a human reviewer and our automated
system were in terms of recovering the keys pressed (Fig-
ures 5, 6, and 7), the code entered (Figure 8), and the
code entered with a possible mistake made (Figure 9).

Figure 5: Percentage of perfect key combinations (i.e.,
without ordering but with all the keys correct) determined
as a function of time when the camera was placed at 14
inches from the keypad; these results were obtained using
our algorithm approaches of max, mean, and binarize (see
the previous section for a reminder on what these are).

Figure 6: Percentage of perfect key combinations deter-
mined as a function of time when the camera was placed
at 28 inches from the keypad; again, these results were
obtained using our three algorithms.

Figure 7: Percentage of perfect key combinations, this
time for all 54 runs at both distances, determined as a
function of time. The results here were obtained through
human visual inspection.

As we can see in Figures 5 and 6, the distance from the
keypad yielded almost no difference in key accuracy (and
in fact the max method even did a tiny bit better when the
camera was further), indicating that we probably could
move the camera further away while still achieving the
same results. In addition, the lens we were using was the
cheapest lens available (albeit not particularly cheap!)
and so it is likely that these results would have persisted
for at least a few more feet with either this or a more per-
formant lens. We can also see, comparing these figures
with Figure 7, that the accuracy of our automated meth-
ods was slightly higher than that of our human reviewer,
especially as more time passed; after a minute, the auto-
mated method could still recover approximately 50% of
the codes, compared to the recovery rate of only 20-30%
from visual inspection.

Looking now at Figures 8 and 9, we can see that
both our human reviewer and our automated system were
much more successful at recovering the individual keys
pressed than the exact in-order code, even when allow-
ing for possible mistakes in the order. We therefore do
not expect that further work on individual frame-based
detection systems will yield much more promising num-
bers, but suggest that novel approaches to whole-video
analysis might present an avenue for improvement.

4.2 Effectiveness of our results
After obtaining our results, we were led to wonder just
how effective they would be in a real-world attack (such
as those described in Section 2). As we saw in our fig-
ures, we consider three possible versions of “success”:
recovering the exact code, recovering the exact code but
with a potential mistake (either a transposition or an in-
correct digit), and recovering the digits of the code with-
out any ordering information.

Recovering the perfect code is clearly the most desir-
able outcome: in this case, an attacker attempting to test
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Figure 8: A comparison of the percentage of perfect codes we able to recover over all 54 runs, as a function of time, using
both human inspection (the graph on the left) and our various algorithmic approaches (the graph on the right). We can see that
neither is particularly successful, but that the automated approach does slightly outperform the human inspection.

Figure 9: A comparison of the percentage of perfect codes we able to recover over all 54 runs, as a function of time, this time
allowing for one transposition (e.g., 1845 instead of 1485) or incorrect key (e.g., 1985 instead of 1485). Again, we can see
the results from human inspection on the left, and the results from our algorithmic approaches on the right.

out different codes would need to test only a single code.
In the case in which the ordering might be slightly off,
we can consider the probability an attacker will have of
guessing the exact code. For a 4-digit code, if the code
given by the algorithm has two digits transposed, then
there are 6 possible choices for the correct code (just
counting the possible transpositions), and so an attacker
will guess the correct code on his first try with proba-
bility 1/6. If a digit is incorrect, however, then he might
have to try each possible digit within each position (while
keeping the other values fixed) before getting the correct
code. If he knows which position is incorrect (for ex-
ample, if the first digit pressed has cooled but the other
ones still have a fair amount of heat residue left), then he
has a 1/9 chance of success; if he doesn’t, then he might
have to try each position in turn and therefore has a 1/36
chance. We also mention that these success probabilities
assume that the attacker actually knows which case he is
dealing with; while this might seem unlikely, simple vi-
sual inspection might often be enough to give him a good

idea (for example, if four keys are clearly pressed then he
can assume a transposition error has occurred rather than
an incorrect digit).

In addition to recovering the ordered code, we also
consider the success probabilities in the case when only
the keys pressed are recovered. Here, for a 4-digit code
there are 4! = 24 possible codes given no ordering in-
formation, and so an attacker will have probability 1/24
in guessing the correct code on the first try. If only three
keys were used (e.g., the code was 6268) and the attacker
doesn’t know which key was repeated then the success
probability goes down to 1/36; if only two keys were
used, on the other hand, then his success probability goes
up to 1/14 (and of course if there is only one key pressed
the success probability is 1). In the case that the code
is longer, this result quickly becomes vastly less useful;
if the code is, for example, 6 digits, then recovering no
ordering information will give the attacker 6! = 720 pos-
sible codes to try. As compared to the only 15 possible
codes if the result contains a transposition error, we can
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see that this approach degrades far more quickly than the
perfect codes with a slight mistake.

Finally, recall that many access control systems, to
prevent code guessing attacks, disallow access entirely
after a small number of incorrect guesses. Naturally, re-
covering the precise code is therefore the optimal out-
come of our attack. With larger data sets in which the
attacker can move on to other, unlocked accounts, how-
ever, the simple recovery of keys pressed can still be
considered a successful attack, as it will likely allow an
attacker access to some non-negligible fraction of ac-
counts.

5 Related work
In a broad sense, our work can be thought of as an attack
taking advantage of persistent side-channel information
(i.e., side channels that remain open even with the pass-
ing of time), in our case the heat residue left on a keypad
after a code has been entered. The recent work of Aviv et
al. [3] also falls into the category: in their paper, the au-
thors identify smudges left by users entering their pass-
word on Android smartphones as a potential side channel
for attacks; as these smudges persist even after standard
usage of the phone (e.g., making a call), an attacker who
steals the phone will be fairly successful in also recover-
ing the code, thus granting him complete access to all the
personal information stored on it.

More closely, our work is related to a study done by
Michał Zalewski [12] on the use of thermal cameras to
perform safecracking; to the best of our knowledge, he
is the only other person to do any research in this area.
As outlined in the introduction, our work aims to com-
plement his by considering a wider spectrum of attack
scenarios and demonstrating the relative effectiveness in
each possible setting.

Finally, we mention that our attack falls into a family
of side-channel attacks in which the theft of private in-
formation cannot be detected, at least not by the victim,
until after the damage has been done (i.e., the informa-
tion has already been used). In the ATM scenario, we
exhibit a type of attack in which customer’s bank card
information is stolen; in particular, we identity a possi-
ble “PIN compromise” type of attack [9, 4]. Similar at-
tacks include replicating physical door keys from high-
resolution photographs [8], keylogging computer key-
board input with just the sound of the keyboard [2, 13],
using electromagnetic emanations from a computer mon-
itor to recover screen contents [7, 11], detecting CPU op-
eration patterns from high-frequency acoustic noise [10],
and many more.

6 Conclusions and Future Work
In this paper, we have demonstrated a thermal camera-
based attack against keypad code entry that is easily

scalable and, in many scenarios, quite effective: even a
minute after the keypad was pressed, we were still able
to recover over half of the entered codes. We further
demonstrated, by comparison to a human reviewer, that
our automated approach rivals visual inspection in terms
of accuracy (and in some cases even outperforms it), in
addition to offering a clear advantage in large-scale at-
tacks such as those on ATMs.

In addition to these positive results, we also found that
in some settings our attack was significantly less effec-
tive than in others. For users with a light touch or a
low body temperature, for example, the heat residue de-
graded significantly more quickly and we were able to
obtain very little information, even after a matter of sec-
onds. The material of the keypad also made a huge dif-
ference: against metal keypads, the few runs that we did
perform were almost completely abortive. Much of this
can be attributed to the high conductivity of the metal,
which meant that the heat residue remained localized to
the key that had been pressed for only a few seconds; we
also observed, however, that either the keypad itself or a
paint put on the keypad caused it to act as a thermal mir-
ror, meaning it was hard to even get a clear reading on
the keypad at all. Therefore, at least based on our current
results, the obvious approach to prevent our (and essen-
tially any thermal-camera-based) attack would be to use
metal keypads exclusively.

For future work, it would of course be possible to ex-
plore more broadly the spectrum of possible attacks; for
example, determining how much environmental temper-
ature plays a role (all our tests were done in one air-
conditioned room) or how far away a camera could be
before results began to seriously degrade. In terms of in-
creasing the effectiveness of our attacks, one clear goal
would be to obtain any results whatsoever from metal
keypads; more generally, we could hope to have a higher
success rate in recovering the exact code and to have
our success in recovering the keys pressed last for even
longer than it already does. We leave these all as inter-
esting open problems.
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